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Abstract

Paleoclimate studies provide crucial insights into the Earth’s climate system drivers and

behavior, helping distinguish between natural climate patterns and human-induced changes

and providing a context for current climate trends. The last deglaciation marked a period

of Earth’s history characterized by the retreat of massive ice sheets covering large parts

of the planet. During this phase, a drastic transition occurred from the cold Last Glacial

Maximum to the warmer and more stable climate of the Holocene. Besides proxy-based

reconstructions and climate model simulations, data assimilation (DA) has emerged as

a promising reconstruction technique of past climates. DA combines the data and the

underlying dynamical principles governing the climate system to provide a state estimate

of the system, which is better than that which could be obtained using just the data or

the model alone.

As the first step of this dissertation, major uncertainties and forcing factors are evaluated

for the last deglaciation using an efficient climate model. Two sets of transient simulations

are based on the novel ice-sheet reconstruction PaleoMist and the established GLAC1D.

The simulations reveal that the proximity of the Atlantic meridional overturning circula-

tion (AMOC) to a bifurcation point, where it can switch between on- and off-modes, is

primarily determined by the interplay of greenhouse gas concentrations, orbital forcing,

and freshwater forcing. The impact of deglacial meltwater on AMOC shapes regional

temperature patterns. PaleoMist simulation shows a pronounced warming in the Bølling-

Allerød (BA), a strong AMOC, and a moderate cooling during the Younger Dryas (YD)

with an AMOC weakening. The opposite signature is found for GLAC1D. The PaleoMist

simulation replicates, at least qualitatively, the BA/YD sequence: a warming in Greenland

and Antarctica in the BA, a cooling northern North Atlantic, and a warming in Antarctica

in the YD.
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In addition, as the main goal, this study presents an efficient method for assimilating

the temporal evolution of surface temperatures for the last deglaciation. In applying an

ensemble Kalman filter approach, the study makes use of the advances in the parallel DA

framework (PDAF). It is found that the DA solution depends strongly on the background

evolution of the decaying ice sheets rather than the assimilated temperatures. Further,

the influence of DA is more pronounced on regional scales than on the global mean. In

particular, DA has a stronger effect during millennial warming and cooling phases, such

as BA and YD, especially at high latitudes with heterogeneous temperature patterns.

In the final step, the DA technique is developed to assimilate the subsurface temperatures.

The results show the DA of subsurface temperatures modifies the precipitation pattern,

which can consequently change the timing and magnitude of climate events such as BA

and YD. The DA technique introduced and developed in this dissertation facilitates the

paleoclimate DA on multi-millennial time scales and can also be employed to study future

warming scenarios.
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Chapter 1

Introduction

1.1 Motivation

Understanding climate dynamics raises critical questions in environmental science,

including: How have past climate fluctuations shaped current patterns, and what

factors drove these changes? What role does human activity play in altering the

global climate, and how can these effects be separated from natural variability?

What are the inherent limits of environmental systems in terms of frequency and

intensity of events, and how do changes in factors like greenhouse gas concentrations

and ice coverage affect these boundaries? Which key drivers, such as greenhouse

gases and solar variations, will most significantly influence climate change over

societal timescales? Addressing these inquiries necessitates robust paleoclimate

research. Past climates provide essential insights into the drivers, variability, and

evolution of the climate system, which are particularly relevant for understanding

current anthropogenic climate change (Alley, 2003; Hargreaves et al., 2007; Rice

et al., 2009; Schmidt, 2010; Snyder, 2010; Bell et al., 2013; Ault et al., 2014; Coats

et al., 2020). They serve as analogues for potential future warm climate states

(Overpeck et al., 2006; Burke et al., 2018; Tierney et al., 2020a), provide reference

points for modern climate comparisons (Gulev et al., 2021), and help quantify both

natural and forced climate variability (Cane et al., 2006; Cook et al., 2011; Goosse

et al., 2012a; Ault et al., 2013; Fernández-Donado et al., 2013; Fang et al., 2021).

Furthermore, by offering targets for assessing climate model performance, the study
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of past climates enhances climate forecast accuracy and supports the development

of more effective adaptation strategies (Crowley, 1991; Hargreaves and Annan, 2009;

Schmidt et al., 2013; Zhu et al., 2021; Gulev et al., 2021).

The last deglaciation, 20-10 thousand years (kyr) before the present (BP), is a

particularly useful period for paleoclimatic inquiry. During the last deglaciation,

all climate components encountered large-scale changes. From a cold Last Glacial

Maximum (LGM), the climate state transited to the warm interglacial state. This

transition was triggered by insolation and geochemical processes (Paillard, 2015).

Furthermore, greenhouse gas (GHG) concentrations rose by 80-100 ppm (Monnin

et al., 2001; Spahni et al., 2005; Veres et al., 2013) and ice sheets melted, and

positive feedbacks occurred (Clark et al., 2012). As a result, the atmospheric and

oceanic circulation experienced significant changes (e.g., Löfverström and Lora,

2017; Pöppelmeier et al., 2023), and the global mean sea level rose by about 100-130

m (e.g., Lambeck et al., 2014; Gowan et al., 2021). However, these changes did not

happen steadily; some abrupt events, pronounced in Greenland ice records, such

as the warming during the Bølling-Allerød (BA; Clark et al., 2002; Weaver et al.,

2003) or the cooling during the Younger Dryas (YD; Carlson et al., 2007) occurred

during the last deglaciation.

Understanding the last deglaciation is not only important for reconstructing past cli-

mates but also for predicting future climate dynamics. The insights gained from this

period help scientists refine their models and improve predictions of how current and

future increases in GHGs will affect global temperatures, sea levels, and ice sheet

stability. As we face unprecedented rates of climate change due to anthropogenic

influences, the lessons learned from the last deglaciation become increasingly rel-

evant. They remind us of the inherent sensitivity of the Earth’s climate system

and the potential for rapid and significant changes in response to both natural and

human-induced forcings (Clark et al., 2012).

There are two traditional approaches to studying past climates: proxy-based recon-

structions and climate model simulations. Proxy-based reconstructions utilize var-

ious natural recorders of climate variability, such as tree rings, ice cores, sediment

layers, and corals, to reconstruct past climates. The proxy data, when carefully
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calibrated and interpreted, can offer valuable insights into past climate conditions,

allowing researchers to piece together climate variability and trends over millennia

(e.g., Consortium et al., 2017) or deeper time in the past (e.g., McManus et al., 2004;

Shakun et al., 2012; Marcott et al., 2013). However, the accuracy and spatial resolu-

tion of proxy data can be limited by the sparsity of proxy records and the potential

for observational errors, which can affect the reliability of the reconstructions. Ad-

ditionally, the relationships between proxies and the targeted climate variables are

often established using empirical, typically linear, statistical approaches or proxy

system modeling. Many proxy reconstructions also assume stationary teleconnec-

tions between local and large-scale climate variables, an assumption that often does

not hold in reality.

In contrast, climate model simulations depend on the physical laws and dynamic

mechanisms governing the climate system to provide continuous spatiotemporal

variations of past climates (e.g., Crowley, 2000; Otto-Bliesner et al., 2006; Jungclaus

et al., 2010; Zhu et al., 2020; Kapsch et al., 2022; Bouttes et al., 2023). These

models simulate the interactions between the atmosphere, oceans, land surface,

and ice, providing a comprehensive view of the climate system’s behavior over time.

Climate models are advantageous because they offer detailed, physically consistent

scenarios of climate dynamics. However, they are also subject to uncertainties

due to limitations in representing complex processes and the chaotic nature of the

climate system (Deser et al., 2012). Combining the two approaches, proxy-based

reconstructions and climate model simulations, allows for cross-validation and a

more robust understanding of past climate variability, leveraging the strengths of

each method to improve the accuracy and reliability of climate reconstructions (e.g.,

Phipps et al., 2013; Goosse, 2015).

An alternative method to the above-mentioned methods for reconstructing past

climates is data assimilation (DA), which merges the information from models

and proxy-based reconstructions. The Intergovernmental Panel on Climate Change

(IPCC) defines DA as follows:

"Data assimilation is a mathematical method used to combine different sources

of information in order to produce the best possible estimate of the state of a
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system. This information usually consists of observations of the system and a

numerical model of the system evolution. Data assimilation techniques are used

to create initial conditions for weather forecast models and to construct reanalyses

describing the trajectory of the climate system over the time period covered by the

observations." (Arias et al., 2023)

DA has been recently applied to reconstruct, for instance, the climate of the past

millennium (e.g. Goosse et al., 2010, 2012a; Hakim et al., 2016; Franke et al., 2017;

Neukom et al., 2019a,b; Tardif et al., 2019; Erb et al., 2022), LGM (e.g., Kurahashi-

Nakamura et al., 2017; Tierney et al., 2020b), YD (Renssen et al., 2015), and for

the last glacial termination (Osman et al., 2021). The motivation behind DA is to

jointly use model simulations and paleoclimate information to estimate the most

likely state and trajectory. In a DA system, the data provide climate information

at the sites, and the model fills in the missing information about the other locations

by adding model dynamics and error bars from the data and the model (Fang and

Li, 2016). DA results align with the information contained in observations and the

physical mechanisms represented by the models. Furthermore, DA outcomes con-

sistently outperform observations and simulations alone (Talagrand, 1997; Bouttier

and Courtier, 2002; Robinson and Lermusiaux, 2000; Li, 2014).

Despite the potential of DA in paleoclimate, these methods have been used rather

modestly in paleoclimate reconstructions due to the relative novelty of DA as a

reconstruction method. Paleoclimate applications pose unique challenges for as-

similation frameworks, leading to a significant focus on developing DA algorithms

for various paleoclimate contexts (e.g., Bhend et al., 2012; Dirren and Hakim, 2005;

Steiger et al., 2014; Mairesse et al., 2013; Dubinkina et al., 2011; Franke et al., 2020;

Dee et al., 2016; King et al., 2021; Parsons et al., 2021; Tierney et al., 2020b; Osman

et al., 2021). Furthermore, DA methods are challenging to implement due to their

multifaceted requirements. This dissertation contributes to developing paleocli-

mate DA frameworks by presenting a fast DA technique for long-term paleoclimate

simulations such as the last deglaciation.
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1.2 Objectives & Structure of the Thesis

This dissertation focuses on the transient simulation of the last deglaciation, the

development of paleoclimate DA methodology and the subsequent reconstruction of

climate variables during this period. It is written based on the following objectives:

1. To investigate the impact of a novel ice-sheet reconstruction on the

simulation of the last deglaciation and to examine the roles of GHGs

and orbital forcings in this context. (Chapter 4)

Due to uncertainty in ice-sheet evolution and the meltwater derived from

them, transient simulations of the last deglaciation (e.g., Liu et al., 2014; Kap-

sch et al., 2022; Bouttes et al., 2023) show discrepancies in terms of global

mean surface temperature and the Atlantic meridional overturning circula-

tion (AMOC) strength compared to the proxy-based reconstructions (e.g.,

McManus et al., 2004; Shakun et al., 2012; Marcott et al., 2013; Osman et al.,

2021), particularly during the BA and YD. Hence, the protocol of the Inter-

comparison Project Phase 4 (PMIP4) protocol prescribes two reconstructions,

GLAC1D, and ICE-6G, as boundary conditions for ice-sheet evolution. These

reconstructions are calculated by inverse modeling and exhibit notable uncer-

tainties, attributed mainly to the viscosity model employed for the solid Earth.

To address the uncertainty caused by ice-sheet reconstruction, a new ice-sheet

reconstruction, PaleoMist (Gowan et al., 2021), that is used for the first time

as an ice-sheet boundary condition for the last deglaciation, is employed in this

study. PaleoMist reconstructs the ice sheets using different methodologies and

prescribes the different freshwater schemes in the last deglaciation simulation.

An Earth system model of intermediate complexity (EMIC), CLIMBER-X

(Willeit et al., 2022), conducts the simulations in this study. EMICs are well-

suited for long-term climate system integrations (Claussen et al., 2002) and

are capable of simulating deglaciation (Charbit et al., 2005; Bonelli et al.,

2009; Ganopolski and Calov, 2011; Heinemann et al., 2014). The deglacial

climate, as simulated with PaleoMist, is evaluated by comparing it with the

GLAC1D simulation. Moreover, the role of the other two forcings prescribed
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by the PMIP4 protocol, GHG and orbital, is examined during the last termi-

nation with respect to the underlying ice sheets and by isolating the effects

of orbital, GHG, and ice sheets.

2. To design and implement a DA technique for the transient simula-

tion of the last deglaciation. (Chapter 5)

Previous studies of DA in paleoclimate have focused primarily on the Holocene

(e.g., Steiger et al., 2018; Tardif et al., 2019). Moreover, they largely focused

on reconstructing one observed variable, mainly surface temperature, and did

not investigate the effect of DA on the model performance in simulating other

climate variables. In general, they employed the offline approach, in which

the initial conditions for the next DA-cycles are not analyzed (e.g. Steiger

et al., 2014) and used different existing simulations as the model background

states (e.g. Osman et al., 2021; Erb et al., 2022) in their DA system to avoid

the enormous computational cost of long-term transient simulations. How-

ever, they did not determine how the quality of the model states, which can

be influenced by boundary settings, affects DA solutions for past climate re-

constructions. In this dissertation, an online DA technique is designed to be

conducted during the transient simulation of the last deglaciation. In the on-

line approach, states are chosen from a dynamically evolving set of parallel

model simulations. The state variables of these simulations are iteratively re-

fined by assimilating proxy records (e.g., Perkins and Hakim, 2017). Surface

temperatures from oceanic and terrestrial paleoclimate records of the recent

deglaciation are assimilated. The model is also equipped with a Parallel Data

Assimilation Framework (PDAF; Nerger and Hiller, 2013), providing an effi-

cient variant of the ensemble Kalman filter (EnKF) algorithm (Evensen, 2003)

as well as a stochastic emulator mimicking internal variability in the model.

The effects of DA on climate trajectories are evaluated, and the results for the

different ice sheet reconstructions, GLAC1D and PaleoMist, are compared to

understand the influence of background states in the DA system.

7



1.2. Objectives & Structure of the Thesis

3. To investigate the effect of the assimilation of oceanic subsurface

temperatures on the simulation of the last deglaciation. (Chapter 6)

Several studies investigate the importance of subsurface temperatures as po-

tential predictors for abrupt changes in deglacial AMOC (e.g., Rühlemann

et al., 2004; McManus et al., 2004; Knorr and Lohmann, 2007; Zhang et al.,

2017). For example, Max et al. (2022) demonstrate a consistent trend of accel-

erated warming in the subsurface ocean preceding the onset of each Heinrich

Event over the last 27 kyr.

In addition, Okazaki et al. (2021) indicate that online DA surpasses offline

DA when the predictability length exceeds the averaging time of observa-

tions. Moreover, a direct correlation exists between predictability length and

the efficacy of online DA, with the ocean’s influence being pivotal in extending

predictability, thus enhancing the performance of online DA over offline meth-

ods (Okazaki et al., 2021). Since temperature variations occur more gradually

in deeper layers than in the surface layer, incorporating subsurface temper-

ature assimilation enhances DA proficiency. Therefore, as a logical step to

develop the DA methodology outlined in Chapter 5, the subsurface tempera-

tures are assimilated into the model, and its effect on abrupt events, such as

BA, is evaluated.

This thesis is structured as follows: Chapter 2 overviews the climate system, climate

forcings in Glacial-Interglacial cycles, the last deglaciation, and DA in paleoclimate

scales. Chapter 3 gives an explanation of the climate model, framework used for the

implementation of DA, and DA algorithm. Chapter 4 investigates the effect of dif-

ferent ice-sheet reconstructions in the last deglaciation’s simulations and has been

submitted in Geophysical Research Letters. Chapter 5 presents a DA technique for

the last deglaciation simulations and has been published in (Masoum et al., 2024)

in Plos One. Chapter 6 develops the DA technique for assimilating subsurface tem-

peratures in the last deglaciation simulation. Chapter 7 concludes and summarizes

this study.
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Chapter 2

Theory

2.1 The Climate System

According to the IPCC (Masson-Delmotte et al., 2021), climate is defined as:

"Climate in a narrow sense is usually defined as the average weather, or more

rigorously as the statistical description in terms of the mean and variability of

relevant quantities over a period of time ranging from months to thousands or

millions of years. The classical period for averaging these variables is 30 years, as

defined by the World Meteorological Organization. The relevant quantities are most

often surface variables such as temperature, precipitation, and wind. Climate in a

wider sense is the state, including a statistical description, of the climate system."

The IPCC divides the climate system into five components:

• The Atmosphere: This is the Earth’s gaseous envelope, divided into four

layers: the troposphere, stratosphere, mesosphere, and thermosphere (Wallace

and Hobbs, 2006). The troposphere, the lowest layer, contains approximately

80% of the atmosphere’s mass and is where cloud formation and weather

phenomena occur (Kikstra et al., 2022). The atmosphere consists mainly of

nitrogen (78%), oxygen (21%), and argon (0.9%). Trace gases, though present

in small quantities, play significant roles in the hydrological cycle (e.g., water

vapor), the global carbon cycle (e.g., methane), and the greenhouse gas effect

(e.g., water vapor, carbon dioxide, nitrous oxide, methane). Due to its low

heat capacity and density, atmospheric processes operate on relatively short
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time scales, ranging from weeks to months (Wallace and Hobbs, 2006).

• The Hydrosphere: This contains all of Earth’s liquid surface and sub-

terranean water, including oceans, lakes, rivers, and groundwater (Kikstra

et al., 2022). Oceans, representing about 97% of Earth’s water masses (Gle-

ick, 1993), have a total mass approximately 250 times that of the atmosphere

(Wallace and Hobbs, 2006), making them significant sinks for heat and anthro-

pogenic carbon. Hydrospheric processes span a wide range of temporal and

spatial scales, from small-scale eddies to Thermohaline Circulation (THC), a

system of currents driven by salinity and temperature gradients and momen-

tum exchange with the atmosphere. While exchange with the atmosphere and

upper ocean mixing occur on relatively short time scales up to months, deep

ocean exchanges occur on millennial time scales.

• The Cryosphere: This includes all frozen water masses on and below the

land and ocean surfaces, such as snow, glaciers, ice sheets, ice shelves, ice-

bergs, and sea ice. Frozen water constitutes approximately 2.2% of Earth’s

water masses (Shikazono and Shikazono, 2012), with the largest share in the

Antarctic and Greenland ice sheets. Ice shelves are floating extensions of ice

sheets that cover parts of the ocean surface. Calving, the process where ice

breaks off from the edge of ice shelves, creates icebergs that transport fresh-

water, heat, and nutrients from ice shelves into the open ocean. Due to their

high reflectivity (albedo), ice masses significantly affect the heat uptake of

land and ocean surfaces. While sea ice varies seasonally, ice sheet buildup

and dissolution occur over multi-millennial time scales.

• The Lithosphere: This is the upper layer of the solid Earth, including the

crust and the elastic uppermost part of the mantle (Kikstra et al., 2022).

The Earth’s crust is divided into continental and oceanic plates that float on

the denser, viscous mantle and move a few centimeters yearly (Wallace and

Hobbs, 2006). Plate collisions can result in volcanic eruptions and the rise of

mountain ranges, such as the Himalayas and the Rocky Mountains (Wallace

and Hobbs, 2006). These tectonic activities shape Earth’s topography and sea
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floor, affect global sea levels, and exchange matter, energy, and momentum

with other Earth system components. The time scales for these processes

range from 107 to 108 years.

• The Biosphere: This encompasses all living organisms on Earth and their

interactions with other Earth system components. Key biospheric processes

include photosynthesis, which produces biomass from carbon dioxide and wa-

ter using solar energy, and respiration, which releases energy by decomposing

biomass. Biomass that is not decomposed forms natural carbon sinks, such as

coal and oil reservoirs and peatlands. The biosphere is crucial in exchanging

carbon, water, and energy with the atmosphere and the ocean. It also affects

Earth’s albedo and surface roughness and is a source of aerosols, impacting

the atmospheric energy budget. Biospheric processes occur on time scales

ranging from hours to centuries (Stocker, 2011).

Figure 2.1: Schematic view of the climate system components, their processes, and
interactions. The figure has been taken from Change (2007).

Figure 2.1 shows in a simplified way that the climate components do not exist in

isolation; rather, they are interconnected and interact on multiple levels, both di-

rectly and indirectly. The system as a whole is driven by solar radiation and evolves

under the influence of its internal dynamics through ocean currents and atmospheric
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circulation. Additionally, external factors, known as forcings, drive the system, i.e.,

a mechanism that puts energy into the system and thus enables it to maintain a

state far away from the thermodynamic equilibrium. All of the forcing mechanisms

combined with all internal feedback mechanisms over all timescales eventually cause

climate variability. Peixoto and Oort (1992) categorizes the forcings as follows:

- External Climate Forcings

• Changes in solar output: The solar irradiance is only 341 W.m−2 on aver-

age. Physical processes within the sun lead to a so-called solar cycle, which

modulates the irradiance by ±0.5 W.m−2 with a periodicity of 11 years. Of

negligible importance on timescales below tens of millions of years is the sun’s

ageing, leading to an increase in luminosity of around 1% per 108 yr.

• Orbital changes: The Earth’s orbit around the Sun is characterized by three

parameters, each of them showing long-term variations that eventually influ-

ence how much energy the Earth receives from the Sun: The axial precession

(periodicities 19 kyr and 23 kyr), the obliquity of the ecliptic (periodicity

4l kyr) and the eccentricity of the orbit (periodicities 100 kyr and 400 kyr)

(Milankovitch, 1941).

- Internal Climate Forcings

• Atmospheric composition: All atmospheric gases consisting of molecules with

an electric dipole moment, e.g., CO2, CH4, H2O, and N2O, absorb parts of

the outgoing terrestrial long-wave radiation (so-called greenhouse gases). The

energy is then either partly re-emitted towards Earth or thermalized in the At-

mosphere, effectively increasing the temperature (Wallace and Hobbs, 2006).

Similarly, atmospheric aerosols, for instance, from volcanoes, may absorb long-

wave radiation (e.g., soot particles) or scatter incoming short-wave radiation

back into space (e.g., H2SO4 droplets) (Boucher and Boucher, 2015).

• Changes in albedo: The albedo determines which share of the incoming solar

radiation is scattered back into space by clouds and land surfaces. Con-

sequently, variations in the vegetation, soil composition, or snow/ice cover

modulate the amount of energy that is taken up by the Climate System.
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• Changes in plate tectonics: The location of the continents plays a crucial role

in terms of how much incoming energy the Earth absorbs due to differences

between land and sea albedo. Processes like pole wandering and continental

drifts occur on timescales ranging from 107 yr to 109yr (Peixoto and Oort,

1992).

Knowing about the timescales of all forcings and feedback mechanisms is particu-

larly important to identify the causes of climate signals, i.e., any trends or patterns

that can be observed in time series of climate variables.

2.1.1 Climate Forcings in Glacial-Interglacial Cycles

Paleoclimatic records reveal a sequence of glacial-interglacial cycles spanning the

last 800 kyr in ice cores (community, 2004) and several million years in deep oceanic

sediments (Lisiecki and Raymo, 2005) and loess (Ding et al., 2002). The past 430

kyr, the most thoroughly documented period, is characterized by 100 kyr glacial-

interglacial cycles of significant amplitude, alongside considerable climate changes

corresponding to other orbital periods (Hays et al., 1976) and millennial time scales

(McManus et al., 2002; Project, 2004). On average, only 20% of each glacial-

interglacial cycle was spent in the warm interglacial mode, typically lasting between

10 to 30 thousand years (Figure 2.2). There is evidence of longer interglacial periods

between 430 and 740 kyr ago, which appear to have been colder than the typical

interglacials of the late Quaternary (community, 2004). The Holocene, the most

recent of these interglacials, continues to the present.

The ice core records demonstrate that GHGs co-varied with Antarctic temperatures

over glacial-interglacial cycles, indicating a close link between natural atmospheric

GHGs fluctuations and temperature. Over the last 420 kyr, CO2 variations broadly

followed Antarctic temperature changes, usually lagging by several centuries to

a millennium (Mudelsee, 2001). The sequence of climatic forcings and responses

during deglaciations, transitioning from full glacial conditions to warm interglacials,

is well-documented. High-resolution ice core records of temperature proxies and

CO2 during deglaciations show that Antarctic temperatures rose several hundred

years before CO2 levels (Monnin et al., 2001; Caillon et al., 2003). During the
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last deglaciation, and likely the three preceding ones, warming commenced at high

southern and northern latitudes several thousand years before the first significant

sea level rise, which resulted from the melting of northern ice sheets linked to

rapid warming at high northern latitudes (Petit et al., 1999; Shackleton, 2000;

Pépin et al., 2001). Current data do not precisely determine whether warming

began earlier in the Southern Hemisphere (SH) or Northern Hemisphere (NH), but

a notable deglacial feature is the inter-hemispheric differences in the magnitude and

timing of strong reversals in the warming trend, which are not in phase between

the hemispheres and are more pronounced in the NH (Blunier and Brook, 2001).

In addition, modeling studies have provided substantial evidence supporting the

significant role of variations in Earth’s orbital parameters in driving long-term cli-

mate variability. Specifically, simulations using General Circulation Models (GCMs)

(e.g., Carlson et al., 2012; Herrington and Poulsen, 2011) corroborate the core prin-

ciple of the Milankovitch theory (Milankovitch, 1941), which posits that a reduction

in NH summer insolation leads to sufficient cooling to trigger ice sheet expansion.

Climate-ice sheet models of varying complexities, when forced by changes in orbital

parameters and reconstructed atmospheric CO2 levels, simulate ice volume varia-

tions and other climate features over the last and several preceding glacial cycles

that align with paleoclimate records (Abe-Ouchi et al., 2007; Bonelli et al., 2009;

Ganopolski et al., 2010).

There is high confidence that orbital forcing is the primary external driver of glacial

cycles (Kawamura et al., 2007; Cheng et al., 2009; Lisiecki, 2010; Huybers, 2011).

Nonetheless, atmospheric CO2 levels serve as a crucial internal feedback mechanism.

Over the past several hundred thousand years, CO2 concentration variability on an

orbital scale has covaried with proxy records, including reconstructions of global ice

volume (Lisiecki and Raymo, 2005), climatic conditions in central Asia (Prokopenko

et al., 2006), tropical (Herbert et al., 2010) and Southern Ocean SST (Pahnke

et al., 2003; Lang and Wolff, 2011), Antarctic temperatures (Parrenin et al., 2013),

deep-ocean temperatures (Elderfield et al., 2010), biogeochemical conditions in the

North Pacific (Jaccard et al., 2010), and deep-ocean ventilation (Lisiecki et al.,

2008). These close linkages between CO2 levels and climate variability are consistent
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Figure 2.2: Orbital parameters and proxy records over the past 800 kyr. (a) Eccen-
tricity. (b) Obliquity. (c) Precessional parameter. (d) Atmospheric concentration
of CO2 from Antarctic ice cores. (e) Tropical sea surface temperature (SST) stack.
(f) Antarctic temperature stack based on up to seven different ice cores. (g) Stack
of benthic δ18O, a proxy for global ice volume and deep-ocean temperature. (h)
Reconstructed sea level. Lines represent orbital forcing and proxy records, shaded
areas represent the range of simulations with climate models forced by variations
of the orbital parameters and the atmospheric concentrations of the major GHGs.
(i) Rate of changes of global mean temperature during the last deglaciation based
on Shakun et al. (2012). The figure has been taken from Masson-Delmotte et al.
(2013).

with modeling results that indicate with high confidence that glacial-interglacial

variations of CO2 and other GHGs explain a significant portion of glacial-interglacial

climate variability in regions not directly influenced by NH continental ice sheets

(Timmermann et al., 2009; Shakun and Carlson, 2010).
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2.1.2 Last Deglaciation

It is highly probable that the global mean surface temperature rose by 3°C to 8°C

during the last deglaciation, with an average rate of change likely between 0.3 to

0.8°C per thousand years. The deglacial global warming occurred in two major

phases from 17.5 to 14.5 kyr ago and from 13.0 to 10.0 kyr BP, with peak rates of

change likely reaching between 1°C and 1.5°C per thousand years at the millennial

scale (Shakun et al., 2012). Higher rates may have been observed regionally and

over shorter timescales, especially during a series of abrupt climate change events.

Paleoclimate records indicate that the deglaciation period was not a smooth, grad-

ual process but was punctuated by abrupt climatic events. These events include the

BA warm period and the subsequent YD cold interval. The BA, occurring around

14.7 to 12.7 ky BP, was characterized by rapid warming and significant glacial melt.

However, this warm phase was abruptly interrupted by the YD, a period of sudden

cooling that lasted for about 1,200 years. The cause of the YD is still debated, but

it is commonly attributed to the massive release of freshwater from the melting ice

sheets, which disrupted the AMOC (Alley, 2003; Clark et al., 2002).

The end of the YD marked the final phase of the deglaciation, leading to the onset

of the Holocene epoch. During this period, temperatures rapidly increased, leading

to the further retreat of ice sheets and rising sea levels. This transition also saw

significant shifts in vegetation and animal populations as ecosystems adapted to the

changing climate. The stabilization of climate conditions during the early Holocene

provided a more favorable environment for human societies, fostering the develop-

ment of agriculture and the rise of civilizations (Fischer et al., 1999; Shuman et al.,

2002).

A comprehensive temperature reconstruction for the last glacial termination (Shakun

and Carlson, 2010) indicates that SH temperature changes preceded those in the

NH. This lead is explained by the bipolar thermal seesaw concept (Stocker and

Johnsen, 2003) and related shifts in inter-hemispheric ocean heat transport trig-

gered by a weakening of the AMOC during the last glacial termination (Ganopolski

and Roche, 2009). Additionally, the rapid response of sea ice to changes in austral

spring insolation (Stott et al., 2007; Timmermann et al., 2009) further accounts for
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SH warming preceding NH warming. These mechanisms suggest that the SH tem-

perature lead over the NH is fully consistent with NH orbital forcing of deglacial ice

volume changes (high confidence) and the pivotal role of climate-carbon cycle feed-

backs in glacial-interglacial transitions. The close coupling is underscored by the

near-zero lag between the deglacial rise in CO2 and the average deglacial Antarc-

tic temperature reported from improved estimates of gas-ice age differences (Pedro

et al., 2012; Parrenin et al., 2013).

2.2 Paleoclimate Data Assimilation (PDA)

DA is an optimization method originating in atmospheric and oceanic sciences.

It allows the combination of optimal information from observations with models

of the earth system to estimate geophysical fields of interest accurately (Wang,

1999). DA enables the quantitative estimation of uncertainties in observations and

simulations and uses observations to constrain model trajectories effectively. The

results updated through DA are consistent with both the information contained

in observations and the physical mechanisms represented by models, ensuring that

these results are superior to those derived from observations and simulations alone

(Talagrand, 1997; Bouttier and Courtier, 1999; Robinson and Lermusiaux, 2000; Li

et al., 2007; Li, 2014).

In past climate research, DA offers a promising method for obtaining better esti-

mates of historical climate states. The basic concept behind PDA is to constrain

a climate model trajectory using proxy data and an observation operator, such as

a forward model, to estimate past climate optimally. This method combines cli-

mate signals recorded in proxies with the physical understanding of the climate

system represented by climate models, allowing for the effective handling of errors

in both proxy data and simulation results. Consequently, estimated climate varia-

tions using DA are generally consistent with both the recorded climate signals and

the physical laws and dynamic mechanisms represented by climate models (Wid-

mann et al., 2010; Hakim et al., 2013). As Edwards et al., 2013 stated, PDA is a

"best-of-both-worlds" method for estimating time slices in the past.
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Since von Storch et al. (2000) first introduced the DA concept into paleoclimatology,

various DA methods have been applied in paleoclimate research. These include

nudging (von Storch et al., 2000), Bayesian estimation (Hargreaves and Annan,

2002), forcing singular vectors (Barkmeijer et al., 2003), ensemble square root filter

(EnSRF; e.g., Pendergrass, 2009; Pendergrass et al., 2012; Bhend et al., 2012; Osman

et al., 2021), and particle filter (PF; e.g., Dubinkina et al., 2011; Goosse et al.,

2012b). Nudging and forcing singular vectors add an artificial forcing term to

forecast equations to drive results forward based on observations, with the main

difference being how the forcing term is constructed. EnSRF, a variant of EnKF,

and PF are ensemble methods based on Bayesian estimation, which are widely used

for their effectiveness in nonlinear and non-Gaussian systems. Although variational

DA methods have been utilized in projects like the Twentieth Century Reanalysis

(Whitaker et al., 2004; Compo et al., 2011), they are less suitable for reconstructing

past climate due to the sparse nature of observations over longer timescales, whereas

EnKF has performed well in such scenarios (Widmann et al., 2010). Bhend et al.

(2012) further showed that variational methods are not ideal for PDA due to the

limited number of observations and climate proxies.

The process of PDA involves using initial conditions and forcings to run climate

model simulations. Assimilation operations commence after the model reaches equi-

librium via a "spin-up" period. Observations during assimilation are either proxy-

based reconstructions of climate variables or original proxy data. The assimilation

of these observations requires either a simple transformation matrix or a forward

model, depending on the type of data. The updated climate variables, termed

"analysis values," are obtained by recursively activating the DA operation over the

period of interest, providing optimal estimations of climate states over time and

space (Dirren and Hakim, 2005; Steiger et al., 2014).

Although the theories of PDA and traditional DA in the fields of atmospheric,

oceanic, and land surface sciences share the same theoretical foundations, PDA

has unique characteristics. Firstly, PDA observations, such as proxies and proxy-

based reconstructions, are time-averaged and continuous over time, whereas DA

observations in other fields, such as in-situ observations and remote sensing data,
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are usually instantaneous and discontinuous (e.g., Dirren and Hakim, 2005; Steiger

et al., 2014). Prior to the instrumental observation epoch, direct observations of

climate variables are generally unavailable, making proxy data the primary source

for PDA. These proxy data are often insufficient and sparse in spatial coverage

and represent average climate states over periods (Saltzman, 2002; Yu et al., 2007).

Consequently, the time intervals of PDA are generally more than 10 years, which

are significantly longer than the time steps and predictability of climate models

(Lorenz, 1982; Kalnay, 2003; Reichler and Roads, 2003; Bhend et al., 2012).

Secondly, PDA requires long-term integration to reconstruct interannual, decadal,

or centennial climate changes over hundreds of years or longer. This contrasts

with DA in atmospheric, oceanic, and land surface sciences, focusing on short-term

predictions (e.g., in the next 6 hours, 24 hours, or up to one month). Consequently,

PDA demands higher computing performance and is more time-consuming (Huntley

and Hakim, 2010). Thirdly, in the context of long-term climate research, initial

conditions have minimal impact on results because their effects attenuate over time

due to the chaotic nature of the atmosphere (Chou, 1983). Some studies have shown

that the impact of initial conditions diminishes well before the end of the simulation

cycle, making updating initial conditions unnecessary for PDA with longer intervals

(Bhend et al., 2012; Annan and Hargreaves, 2012; Steiger et al., 2014). However,

Okazaki et al. (2021) has indicated updating initial conditions improves the skill of

the DA. These special aspects of PDA necessitate modifying or improving existing

DA methods to study interannual, decadal, and centennial climate variability over

large spatial and temporal scales (Widmann et al., 2010; Hakim et al., 2013).

2.2.1 Frequent PDA Algorithms

1) Nudging

Nudging is a sequential DA method that uses dynamic relaxation to adjust a model

towards observations by adding an artificial forcing term to the governing equations

(Kistler, 1974; Hoke and Anthes, 1976). This forcing term is proportional to the

difference between observations and the model’s forecasted equivalent. Nudging

ensures that the model forecasts approximate available observations and maintains
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dynamical coordination among various model variables. It also serves as the initial

condition for subsequent simulations, enhancing prediction skills. von Storch et al.

(2000) first introduced nudging into paleoclimatology, demonstrating its applicabil-

ity and superiority. Nudging’s simplicity, effectiveness, and ease of implementation

make it suitable for DA with complex, non-linear models like coupled climate system

models (Widmann et al., 2010). However, nudging cannot assimilate observations

that models cannot forecast without converting them into forecasted variables first,

and the relaxation factor assignment lacks a theoretical basis (von Storch et al.,

2000).

2) PF

PF is a Bayesian estimation algorithm based on the Monte Carlo method, suitable

for nonlinear and non-Gaussian systems (Gordon et al., 1993). It estimates the

posterior probability density function (PDF) using weighted random particles in

state space. The standard PF’s ability to represent the posterior PDF accurately

improves with the number of particles used. Prior to 2011, simplified or degenerated

versions of PF were used in paleoclimate research, achieving satisfactory skill levels

even with fewer particles under the constraint of high-quality proxies (Goosse et al.,

2010; Crespin et al., 2009; Widmann et al., 2010). Advanced PF with residual re-

sampling showed significant improvements, confirmed by further studies (Dubinkina

et al., 2011; Annan and Hargreaves, 2012).

3) EnSRF

EnSRF is a deterministic DA algorithm based on EnKF, first proposed by Whitaker

and Hamill (2002). EnSRF does not rely on perturbing observations and uses the

Monte Carlo method to compute background error covariance, making it applicable

to DA experiments with non-linear models and reducing computational demands.

Dirren and Hakim (2005) adapted EnSRF for time-averaged observations in PDA,

demonstrating its effectiveness. Huntley and Hakim (2010) found that the spa-

tial distribution of proxies plays a significant role in DA skill, while Pendergrass

et al. (2012) highlighted the importance of matching proxy temporal resolution

with model variables. Steiger et al. (2014) showed that PDA results using EnSRF

outperformed traditional methods like principal component analysis, especially in
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regions with sparse proxy data.

2.2.2 Online vs Offline

Based on the DA approach to integrating proxy data and model simulations, PDA

is categorized into two main approaches: online (e.g., Annan and Hargreaves, 2012;

Goosse et al., 2012b) and offline (e.g., Steiger et al., 2014; Osman et al., 2021). The

main differences between these two approaches can be explained as follows:

Temporal Integration: Online DA incorporates proxy data into the model sim-

ulation in real-time as the model runs. This allows for continuous updates and

adjustments to the model state based on the available proxy information. On the

other hand, offline DA uses pre-computed model simulations and combines them

with proxy data after the model run is complete. This approach is less computa-

tionally intensive but may not capture the full temporal evolution of the climate

system.

Computational Resources: Online DA typically requires more computational

resources as it involves running the climate model and assimilating data simulta-

neously. This can be particularly demanding for complex Earth system models.

Offline DA is generally less computationally expensive since it uses pre-existing

model simulations. This makes it more feasible for longer time periods or when

computational resources are limited.

Feedback Mechanisms: Online DA allows for immediate feedback between the

assimilated proxy data and the model state. This can lead to more dynamically

consistent reconstructions, as the model can adjust to new information in real-time

(Perkins and Hakim, 2017; Okazaki et al., 2021). Offline DA lacks this immediate

feedback, potentially resulting in reconstructions that are less dynamically consis-

tent with the underlying climate physics.

Uncertainty Quantification: Online DA can provide more comprehensive uncer-

tainty estimates by accounting for both model and proxy uncertainties throughout

the simulation process. Offline DA may have limitations in fully capturing the

propagation of uncertainties, especially those related to model dynamics.

Temporal Resolution: Online DA can potentially provide higher temporal res-
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olution reconstructions, as it can incorporate proxy data at each time step of the

model simulation. Offline DA is often limited to the temporal resolution of the

pre-computed model simulations, which may be coarser than the available proxy

data.

Flexibility in Proxy Integration: Online DA allows for more flexibility in in-

corporating new proxy data or updating existing proxies during the reconstruction

process. Offline DA is less flexible, as it relies on pre-computed model simulations

and may require rerunning the entire assimilation process to incorporate new proxy

information.

In addition, there are two types of offline DA: transient offline DA and stationary

offline DA. In transient offline DA, the background consists of an ensemble run for

the same time period as the temporal resolution of the observations (Goosse et al.,

006a; Bhend et al., 2012; Franke et al., 2017). Conversely, in stationary offline DA,

the background remains the same at all analysis steps and consists of a single run

(Steiger et al., 2014; Hakim et al., 2016; Tardif et al., 2019). Stationary offline DA is

computationally efficient because it does not require an ensemble run. Steiger et al.

(2014) demonstrated that this method outperforms the conventional climate field

reconstruction method based on principal component analysis in reconstructing the

surface temperature field, although its performance relative to transient offline DA

is unclear.

In summary, while online paleoclimate DA offers advantages in terms of dynamic

consistency, temporal resolution, and feedback mechanisms, it comes at the cost

of higher computational requirements. Offline DA, although less dynamically con-

sistent, provides a more computationally efficient approach for reconstructing past

climate conditions, especially over longer time periods or when resources are limited.

2.2.3 PDA Challenges

One major issue is the uneven and sparse spatial distribution of existing prox-

ies, coupled with a noticeable diversity among them. The influence of the spatial

distribution of observations on the estimation skill of DA is significant. For re-

gions far from observations, such as the SH and marine realms, updated DA re-
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sults often show little to no improvement due to long-range "spurious correlations"

(Houtekamer and Mitchell, 2001; Annan and Hargreaves, 2012; Anderson and Lei,

2013; Han et al., 2015). While covariance localization and observation localization

can address these spurious correlations, they may also lead to non-optimized model

states. Accurately quantifying proxies with qualitative characteristics for numerical

calculation in DA also presents a significant challenge (Zhang and Jiang, 2004; Su

et al., 2014).

Another issue is the difficulty in constructing forward models for proxies or the lack

of explicit expressions for these models. PDA observations have primarily been

proxy-based temperature reconstructions. Constructing reliable forward models for

various proxies remains challenging. Although tree-ring proxies have a relatively

mature forward model (Vaganov et al., 2006) validated for PDA (Breitenmoser

et al., 2014), other proxies, like stable isotope δ18O in precipitation, still require

validation for their forward models (e.g., Sturm et al., 2005; Fischer, 2006; Zhang

et al., 2009; Tierney et al., 2020b).

The uncertainties of initial conditions and forcings are significantly greater in PDA

than in DA for modern climate research. For modern climate research, initial condi-

tions and forcings are derived from instrumental data, which generally show higher

accuracy and lower uncertainty. In contrast, paleoclimate research relies on proxy-

based reconstructions, which exhibit lower accuracy and higher uncertainty. Smer-

don (2011) reported that the signal-to-noise ratios of proxies are representative

of real-world conditions, indicating significant noise levels. These uncertainties in

initial conditions and forcings in PDA can compromise the expected skill of past

climate estimations (Steiger et al., 2014).

Verification of PDA results is another challenging issue. Unlike modern climate

data, where actual past climate states can be accurately captured by instruments,

PDA results for periods before the instrumental era (approximately 1850 to present)

can only be indirectly verified by comparing them with other proxy-based recon-

structions or climate model simulations. This lack of credible references makes it

difficult to validate PDA outcomes effectively (Bhend et al., 2012).
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Model and Tools

3.1 CLIMBER-X

CLIMBER-X v1.0 is an EMIC that bridges the gap between computational ef-

ficiency and high-resolution climate simulations. The model is designed with a

modular structure, encompassing a range of components that simulate the atmo-

sphere, ocean, sea ice, and land surface processes. Each component operates on a

regular latitude-longitude grid with a horizontal resolution of 5◦ × 5◦, facilitating

efficient data exchange and integration. CLIMBER-X stands out due to its ability

to simulate the Earth system over extensive temporal scales, from decades to over

100 kyr, making it a powerful tool for both past climate reconstructions and future

climate projections. The model achieves a remarkable throughput of around 10,000

simulation years per day on a high-performance computer with 16 CPUs, which is

significantly faster than many state-of-the-art GCMs. This efficiency is achieved

without compromising the model’s ability to realistically reproduce many observed

climate characteristics, providing a robust platform for studying long-term climate

dynamics. The modular design of CLIMBER-X ensures that each component, from

the atmosphere to the ocean and land surface, is finely tuned and validated against

present-day and historical climate data, allowing for comprehensive climate simu-

lations with detailed feedback and sensitivity analyses.

A simplified overview of the model is given in Figure 3.1. Version 1 of CLIMBER-X

(https://doi.org/10.5281/zenodo.6877358) is used for Chapter 5 and Version 2 for
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Chapter 4 and 6. In the following, the different model components are explained in

more detail.

Figure 3.1: Schematic illustration of the CLIMBER-X model, including exchanges
and coupling between the different components. Figure has been taken from Willeit
et al. (2022).

3.1.1 Atmosphere Model (SESAM)

The atmospheric component of CLIMBER-X is called the Semi-Empirical Statistical-

Dynamical Atmosphere Model (SESAM). SESAM operates on a 5◦×5◦ grid and uses

a semi-empirical approach, leveraging high-quality climatological data and complex

climate model simulations. The model includes a 2.5-D representation where prog-

nostic variables such as temperature, specific humidity, and eddy kinetic energy are

2-D, but horizontal energy and water transport, as well as vertical fluxes of long-

wave radiation, involve 3-D distributions. The vertical structure of the atmosphere

is characterized using universal vertical profiles for temperature and relative humid-

ity, while the horizontal wind velocity is divided into geostrophic and ageostrophic

components. SESAM also incorporates cloud parameterizations based on atmo-

spheric relative humidity, effective vertical velocity, and near-surface temperature

inversion strength, along with comprehensive schemes for shortwave and longwave

radiation (Petoukhov et al., 2000; Hansen et al., 1983; Feigelson et al., 1975).
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3.1.2 Ocean Model (GOLDSTEIN)

The ocean component of CLIMBER-X is based on the 3-D frictional-geostrophic

balance model GOLDSTEIN. GOLDSTEIN diagnoses horizontal and vertical ocean

velocities using frictional-geostrophic balance and hydrostatic equilibrium, ensur-

ing stable and realistic ocean dynamics without internal variability. The model uti-

lizes an advection-diffusion equation for tracer transport, employing a flux-corrected

transport scheme to minimize numerical diffusion. It also includes parameteriza-

tions for isopycnal and diapycnal mixing, as well as eddy-induced transport. The

ocean model operates on the same 5◦×5◦ grid as the atmosphere model and includes

23 vertical layers with varying thicknesses. Adaptations have been made to handle

dynamic changes in the land-sea mask, ensuring continuous and realistic transitions

in ocean properties (Edwards et al., 1998; Redi, 1982; Rahmstorf, 1993).

3.1.3 Sea Ice Model (SISIM)

SISIM, the Sea Ice Model in CLIMBER-X, is a dynamic-thermodynamic model

with a single ice layer and a snow layer on top. SISIM computes the surface energy

balance separately for ice-free and ice-covered areas within each oceanic grid cell.

The model handles the accumulation and melting of snow and sea ice, considering

both surface and basal processes. It includes temperature-dependent sea ice albedo,

a parameterization for snow albedo, and accounts for conductive heat flux within

the ice and snow layers. Sea ice dynamics are simulated using an elastic-viscous-

plastic rheology and a flux-corrected transport scheme for ice and snow thickness

advection. SISIM also manages the interaction between sea ice and ocean currents,

ensuring realistic drift and deformation of sea ice (Semtner Jr, 1976; Hunke and

Dukowicz, 1997).

3.1.4 Land Surface Model (PALADYN)

The land surface model PALADYN in CLIMBER-X serves as an interface for energy

and water exchanges between the surface and the atmosphere while representing

vegetation dynamics and land carbon cycle processes. PALADYN includes explicit
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treatment of permafrost and differentiates between eight surface types, including

various plant functional types, bare soil, land ice, and lakes. The model employs a

consistent approach to simulate soil temperature, water content, and carbon pro-

cesses across five soil layers. Additionally, PALADYN includes modules for snow

albedo, dust emissions, and the effects of land use changes. The model’s hydro-

logical cycle covers interception, runoff, and infiltration, ensuring a comprehensive

representation of terrestrial processes. Recent enhancements include parameteri-

zations for snow grain size and dust and soot effects on snow albedo, based on

regional climate model outputs and empirical data (Willeit and Ganopolski, 2016;

Dang et al., 2015).

3.2 PDAF

PDAF provides a computationally efficient framework for performing ensemble-

based DA with different filters in numerical models (http://pdaf.awi.de; Nerger and

Hiller, 2013). It separates the data assimilation system into three parts: numerical

model, observations, and filter algorithms. The filter algorithms combine the model

and observational information.

PDAF can be efficiently coupled with numerical models, allowing us to have a

model with data assimilation extension (Figure 3.2). The high efficiency and full

parallelization features of PDAF make it a proper tool for different ensemble sizes for

data assimilation in climate models (Nerger et al., 2020). Different types of EnKF

filter algorithms, PF, and variational methods for DA are available in PDAF.

3.3 DA Algorithm

In this study, the Local Error Subspace Transform Kalman Filter (LESTKF) is

chosen as the DA algorithm because it is a particularly efficient formulation for

high-dimensional DA (Nerger et al., 2012).

The LESTKF is a localized version of the Error Subspace Transform Kalman Filter

(ESTKF; Nerger et al., 2012). The ESTKF uses an ensemble of m model states

of size n, which are stored as columns of the matrix Xk. The prior climate states
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Figure 3.2: Left: Flow diagram of a typical numerical model. Right: The flow
diagram of the model extended to an assimilation system by calls to routines of the
assimilation framework. Figure has been taken from Nerger and Hiller (2013).

matrix Xprior
k from the model simulations is converted into a matrix of analysis

states Xa
k at time tk using the transformation

Xa
k = x̄prior

k 1T
m +Xprior

k

(
wk1

T
m + W̃k

)
. (3.1)

Here, x̄prior
k presents the prior ensemble mean state of size n, and 1m is a vector of

size m having the value of one in all elements. Additionally, wk is a vector size of

m transforming the ensemble mean, and the ensemble perturbation is transformed

by the matrix W̃k of size m ×m named weight matrix. Since all computations in

the analysis refer to the time tk, the time index k is skipped hereafter.

The ensemble transformation matrix and vector are calculated in an error subspace

of dimension m − 1 represented by the prior ensemble. An error-subspace matrix

can be computed by L = XpriorT, where the matrix T, named projection matrix,

has the size of m×m− 1 and is defined by
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Tji =


1− 1

m
1

1√
m
+1

for i = j, j < m

− 1
m

1
1√
m
+1

for i ̸= j, j < m

− 1√
m

for j = m.

(3.2)

The relation between the prior state vector xprior and the vector of observations y

is described as

y = H(xprior) + ϵ, (3.3)

where H is the observation operator, and ϵ gives the vector of observation errors,

which is considered a white Gaussian distributed random process with observation

error covariance matrix R. For the analysis step, a transform matrix, which has

size (m− 1)× (m− 1), is calculated as

A−1 = ρ(m− 1)I+ (HXpriorT)TR−1HXpriorT. (3.4)

Here, the I is the identity matrix, and ρ is named the "forgetting factor" (Pham

et al., 1998). ρ with the value of 0 < ρ ≤ 1 is used to inflate the prior error

covariance matrix. The weight vector w and matrix W̃ are now defined by

w = TA(HXpriorT)TR−1(y −Hx̄prior), (3.5)

W̃ =
√
m− 1TA1/2TT , (3.6)

where A1/2 is the symmetric square root of A = US−1UT that is calculated from

the eigenvalue decomposition USV = A−1 such that A1/2 = US−1/2UT .
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For localization, which is required for a high-dimensional model, each individual

grid point is independently updated by a local analysis step that considers only

observations within a horizontal radius of influence l. Thus, a local observation

operator computes an observation vector within the radius l from the global model

state. Furthermore, each observation is weighted according to its distance from the

grid point. The weight is applied by multiplying the entries of matrix R−1 in the

Eqs (3.4) and (3.5) by a weight which decreases from one to zero with increasing

distance. The localization weight is computed by a fifth-order polynomial with a

form similar to a Gaussian function (Gaspari and Cohn, 1999). In localization,

Eq (3.1) is used with individual matrices wk and W̃k for each local analysis region.
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Transient Simulations of the Last

Deglaciation

Several studies highlight different facets of glacial-interglacial climate, including

the last deglaciation, by employing model simulations with prescribed ice sheet

changes (e.g., Knorr and Lohmann, 2007; Liu et al., 2009; He, 2011; Zhang et al.,

2014, 2017; Sun et al., 2022) or more complicated simulations done by coupled ice

sheet-climate modeling (e.g., Ganopolski and Calov, 2011; Abe-Ouchi et al., 2013;

Gregoire et al., 2015). Ganopolski and Calov (2011) and Abe-Ouchi et al. (2013)

emphasize that orbital changes primarily drive glacial-interglacial cycles. Zhang

et al. (2021) show that an abrupt transition from warm interstadial to cold stadial

states could be initiated directly by precession and obliquity changes. Gregoire

et al. (2015) suggest that orbital forcing is the main driver of the reduction of

North American ice sheets, while GHG forcing accounts for 30% contribution as

the second driver. GHG, particularly CO2, are essential for the amplitude of the

cycles and result in complete deglaciation (Charbit et al., 2005; Ganopolski and

Calov, 2011; Abe-Ouchi et al., 2013; Heinemann et al., 2014). Prescribing ICE-4G

ice sheets (Peltier, 1994), Timmermann et al. (2009) indicate that orbital forcing and

atmospheric CO2 increase initiate the warming around Antarctica without direct

triggers from the NH.

Previous studies show that a primary source of uncertainty in the glacial-interglacial

simulations is the ice sheet evolution, which has a decisive influence on the timing
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and occurrence of climate events (e.g., Ullman et al., 2014; Zhang et al., 2014;

Bakker et al., 2020; Kapsch et al., 2022). Ice sheet heights are important for sim-

ulating the atmospheric (Kageyama and Valdes, 2000; Löfverström et al., 2014)

and oceanic circulation (Zhang et al., 2014; Zhu et al., 2014; Sherriff-Tadano et al.,

2018). Kapsch et al. (2022) and Bouttes et al. (2023) follow PMIP4 (e.g., Kageyama

et al., 2017) for transient simulation of the last deglaciation (Ivanovic et al., 2016),

and compare the effect of the ICE-6G (Argus et al., 2014; Peltier et al., 2015) and

GLAC1D (Tarasov et al., 2012; Briggs et al., 2014) ice sheet reconstructions. Con-

sistent with the control of the ocean circulation by ice sheet height (Zhang et al.,

2014), Kapsch et al. (2022) indicate that topography differences lead to changes in

the jet stream’s magnitude, the atmospheric circulation, and river directions in the

last deglaciation. Bouttes et al. (2023) employ an EMIC and show that changes in

bathymetry lead to a cooling in the deglaciation simulations. In addition, the use

of evolving ice sheets implies changes in freshwater flux into the ocean, affecting

AMOC (McManus et al., 2004; Stouffer et al., 2007; Kageyama et al., 2010). The

deglacial AMOC strongly depends on the timing and magnitude of freshwater forc-

ing at high latitudes of the North Atlantic or Arctic, where deep water forms (e.g.,

Stouffer et al., 2006; Smith and Gregory, 2009; Roche et al., 2010; Lohmann et al.,

2020). When the freshwater shifts over a critical value, called bifurcation point

(Held and Kleinen, 2004), the AMOC can shift or fluctuate between modes (e.g.,

Lohmann and Schneider, 1999; Zhang et al., 2017; Klockmann et al., 2018; Kapsch

et al., 2022; Sun et al., 2022). Accordingly, AMOC instability can lead to abrupt

climate changes during the last deglaciation (e.g., Lohmann and Schulz, 2000; Clark

et al., 2002; Knorr and Lohmann, 2007). Bethke et al. (2012) conduct sensitivity

simulations with the ICE-5G (Peltier, 2004) reconstruction and investigate different

combinations of GHG, orbital, and ice sheet forcing. They suggest that ice sheet

reconstructions provide limited constraints on the timing, volume, and location of

the freshwater discharges associated with melting ice sheets.

This chapter conducts several simulations of the last deglaciation with different

forcings to understand the role of ice sheets, GHGs, and orbital forcings for the

past 22 ka BP.
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4.1 Choice of ice sheet reconstruction

PaleoMist and GLAC1D use different methodologies to reconstruct the past ice

sheets. GLAC1D creates the Greenland Ice Sheet based on an ice sheet model-

ing exercise that was tuned to fit Holocene sea level observations (Tarasov and

Richard Peltier, 2002). Antarctica and North American ice sheets are based on

an ensemble average of several thousand ice sheet model simulations that scored

favorably in fitting constraints such as Holocene sea level changes and present-day

uplift rates (Tarasov et al., 2012; Briggs et al., 2014). Conversely, PaleoMist cal-

culates the ice sheet using the ICESHEET program (Gowan et al., 2016), which

assumes perfectly plastic, steady-state conditions for the ice sheet (i.e., the lat-

eral shear stresses are ignored, and the ice surface is not dynamically changing).

Employing the model SELEN (Spada and Stocchi, 2007), changes in sea level and

Earth’s deformation are computed using a time series of ice sheet changes. Finally,

the sea level change is added to modern topography and the ice sheet thickness to

produce a paleo-topography reconstruction (Gowan et al., 2021). Due to the above

differences, the sea level increases linearly in PaleoMist while showing variation in

GLAC1D, particularly during BA and YD (Figure 4.1).

Figure 4.1: (a) Ice-volume evolution and (b) relative sea level to pre-industrial (PI)
during the last deglaciation calculated by GLAC1D and PaleoMist.

Yokoyama et al. (2022) criticize that PaleoMist is based only on near-field con-

straints, resulting in discrepancy with previous studies (e.g., Clark and Tarasov,

2014) in the estimation of the relative sea level. To reply to Yokoyama et al.

(2022), Gowan et al. (2022) reason that by relying on near-field constraints, Pa-
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leoMist would be independent of deep-sea foraminifera and avoid sea-level proxies

with high uncertainties. Moreover, Gowan et al. (2022) question in using spherically

symmetric Earth structures to represent far-field sea level. Therefore, Gowan et al.

(2021) utilize non-ice sheet proxies not as absolute constraints but to test PaleoMist

qualitatively.

4.2 Experimental Design

Two sets of transient deglaciation simulations, Exp_GLAC1D and Exp_PaleoMist,

are conducted, each consisting of five simulations: full-forced (GLAC1D_full and

PaleoMist_full), with constant ice sheet reconstruction (GLAC1D_fixIce and Pa-

leoMist_fixIce), with constant GHG (GLAC1D_fixGHG and PaleoMist_fixGHG),

with constant orbital forcing (GLAC1D_fixOrbit and PaleoMist_fixOrbit), and PI

simulation (GLAC1D_PI and PaleoMist_PI; Table A.1). In both experiments,

GHG concentrations and orbital parameters are prescribed by Köhler et al. (2017)

and Laskar et al. (2004), respectively. In addition, the GLAC1D reconstruction

(Tarasov and Richard Peltier, 2002; Tarasov et al., 2012; Briggs et al., 2014) is used

for ice sheets, bathymetry, and land-sea mask in Exp_GLAC1D, while Exp_PaleoMist

employs the PaleoMist reconstruction (Gowan et al., 2021). Except for PI simula-

tions, full-forced simulations are integrated from 25 kyr BP with PI equilibrium and

then switch to LGM boundary conditions. The model is subsequently run until the

year 6.5 kyr BP. Time-varying topography, bathymetry, GHGs (CO2, N2O, CH4),

and orbital parameters are prescribed in the full-forced simulations. The GHG and

orbital parameters forcing field is updated yearly, while topography, bathymetry,

and ice sheet distribution are changed every 100 years. In the model, the FW flux

to the ocean is computed from a combination of precipitation-evaporation, sea ice

fluxes, and land runoff. Additionally, the prescribed changes in ice thickness are

converted into a liquid water flux that is routed into the ocean following the steepest

surface gradient.

The sensitivity simulations begin with boundary conditions from 22 kyrs BP, and

throughout the simulation, the corresponding forcing remains constant at the 22

37



4.3. Sensitivity simulations

kyrs BP level, while the other forcing factors vary over time. The LGM initial

conditions recommended in the PMIP4 protocol (Kageyama et al., 2017) are pre-

scribed. This means that in simulations with constant GHG forcing, CO2, N2O,

and CH4 were set to 190 ppm, 200 ppb, and 375 ppb, respectively. Similarly, ec-

centricity, obliquity, and perihelion are kept constant in simulations with constant

orbital forcing at 0.018994, 22.949◦, and 114.42◦, respectively. This configuration

is intentionally designed to determine the distinct role of individual forcing factors.

Finally, PI is defined as the year 1850, and PMIP4 instructions are followed for

applying GHG and orbital forcings in the PI simulations.

4.3 Sensitivity simulations

In Figure 4.2, the left panels show the deglacial dynamics for Exp_GLAC1D,

whereas the right panels are for Exp_PaleoMist. Sensitivity forcing experiments

are performed, maintaining different deglacial forcing components at LGM lev-

els. In scenarios with fixed ice sheets and bathymetry (blue lines in Figure 4.2),

North Atlantic FW forcing (≥30◦ N, including FW in the Arctic Ocean) remains

near LGM levels. Consequently, North Atlantic sea surface salinity (SSS) and

AMOC show minor changes. However, in Exp_GLAC1D, FW forcing slightly ex-

ceeds Exp_PaleoMist on average by approximately 0.05 Sv, resulting in a weaker

early Holocene AMOC. GLAC1D_fixIce and PaleoMist_fixIce simulations underes-

timate last deglaciation warming, yielding an early Holocene GMST approximately

2.5 ◦C warmer than LGM. This result aligns with the anticipated consequences

of constant FW forcing and albedo effects, corroborating findings by Zhang et al.

(2014), indicating that slight changes in NH ice sheet height can initiate immediate

climate shifts.

In simulations with constant GHG forcing (red lines in Figure 4.2), FW forcing is

higher than in full-forced simulations due to more precipitation occurring in the

fixGHG simulations (see Figures A.2, A.3, and A.4 in Appendix A). This is notable

in Exp_PaleoMist during YD and early Holocene (Figure 4.2b). When FW exceeds

approximately 0.24 Sv during the simulations, AMOC transitions to off-mode. This
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Figure 4.2: North Atlantic FW, North Atlantic SSS, AMOC at 26◦N, and GMST for
Exp_GLAC1D (a),(c),(e),(g), and for Exp_PaleoMist (b),(d),(f), and (h). LGM is
defined as 22-19 kyr BP, Heinrich Stadial 1 (HS1) as 19-14.7 kyr BP, BA as 14.7-13
kyr BP, and YD as 13-11.6 kyr BP. North Atlantic index for SSS is defined as an
average over 50◦N-70◦N and 45◦W-0◦W. The blue background represents LGM, BA,
and early Holocene, while the white background represents HS1 and YD. Note that
the vertical axes differ for Exp_GLAC1D and Exp_Paleomist except for GMST
panels (g and h). North Atlantic FW flux encompasses precipitation-evaporation,
sea ice fluxes, land runoff, and liquid water flux melted from ice sheets.

transition aligns with HS1 culmination in Exp_GLAC1D (Figure 4.2e) and YD on-

set in Exp_PaleoMist (Figure 4.2f). This supports Zhang et al. (2017) results, sug-

gesting atmospheric CO2 changes critically impact AMOC transitions. Nonetheless,

abrupt declines in FW within GLAC1D_fixGHG lead to sudden AMOC strength-

ening, subsequently resulting in a rapid increase in GMST. Furthermore, the GMST
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increases only by approximately 3 ◦C during deglaciation in simulations featuring

constant GHG forcing. This underscores the significant role played by transient

GHG concentrations in driving the last deglaciation process.

There is a conspicuous FW forcing in GLAC1D_fixOrbit and PaleoMist_fixOrbit

(green lines in Figure 4.2). Ice sheets’ contribution to FW forcing remains un-

changed across full-forced, constant GHG and orbital simulations. However, there

are substantial variations in precipitation patterns, global mean precipitation, and

evaporation between these simulations and the full-forced ones (see Figures A.2,

A.3, and A.4 in Appendix A).

GLAC1D_fixOrbit and PaleoMist_fixOrbit depict higher precipitation in the NH,

leading to increased FW in the North Atlantic. Furthermore, AMOC transitions to

an off-mode state at comparable times (as shown in Figure. 4.2e and 4.2f) as in simu-

lations with constant GHG forcing. This finding aligns with the outcomes of a study

by Zhang et al. (2021), which demonstrated that precession and obliquity play influ-

ential roles in shaping hydroclimate in glacial-interglacial cycles. GHG and orbital

forcings influence FW fluxes by changing precipitation patterns, with a sustaining

effect on the AMOC. Moreover, the GLAC1D_fixOrbit and PaleoMist_fixOrbit

simulations effectively replicate the increase of approximately 5 ◦C in GMST dur-

ing the last deglaciation. This underscores the significant impact of GHG and ice

sheets on the simulation of global temperatures during this period, although such

forcing also affects the dynamics of AMOC.

4.4 Full-forced simulations: GLAC1D vs PaleoMist

In full-forced simulations (black lines in Figure 4.2), North Atlantic SSS (Figure 4.2c

and d) is anti-correlated with North Atlantic FW forcing (Figure 4.2a and b) and

reduced by about one psu during the simulations. This reduction is attributable to

the FW contributions resulting from ice sheet melting (Broecker, 2002; Clark et al.,

2012). North Atlantic SSS differs from 1 to 5 psu between GLAC1D_full and Pa-

leoMist_full during various temporal segments (Figure 4.2c and d). GLAC1D_full

is less saline over the Atlantic and more saline at the surface of the other oceans
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(see Figure A.5 in Appendix A). During BA, due to the shutdown of AMOC in

Exp_GLAC1D (Figure 4.2e), the northward transport of warm and saline water

is disrupted, producing pronounced differences (exceeding 5 psu in North Atlantic)

relative to Exp_PaleoMist (Figure 4.2c and d). During YD, GLAC1D_full sim-

ulates more saline surface water near Greenland, where deep water forms in the

North Atlantic (Figure 4.2c and d). This phenomenon is potentially linked to the

stronger AMOC in GLAC1D_full compared to PaleoMist_full (Figure 4.2e and f).

PaleoMist presents a more extensive and higher ice sheet configuration than GLAC1D

(see Figure A.6 in Appendix A). In the SH, PaleoMist_full shows more area cov-

ered by sea ice (sea ice fraction in grid cell ≥15%) during LGM (≈20 mln km2) and

BA (≈15.67 mln km2) compared to GLAC1D_full (≈19 and ≈8.79 mln km2 for

LGM and BA, respectively). In the NH, sea ice area during LGM in PaleoMist_full

(10.30 mln km2) exceeds that of GLAC1D_full (9.55 mln km2). However, during

BA, due to the weak AMOC, GLAC1D_full exhibits a greater sea ice area (12.73

mln km2) than PaleoMist_full (9.85 mln km2) over the NH (Figure 4.3).

Figure 4.3: Ice sheet coverage (green area), sea ice (grey area), topography (contour
lines), and SST anomaly relative to PI during LGM and BA for GLAC1D_full (left)
and PaleoMist_full (right). The shown variables are averaged over the defined
intervals. Note that the sea ice is plotted by the resolution of 5◦ × 5◦ while the
resolution of ice sheets and continents is 0.5◦ × 0.5◦.

The glacial SST anomaly (∆SST) relative to PI period is almost identical over the
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Region MARGO GLAC1D_full PaleoMist_full
Southern Ocean western Atlantic1 -2.5 ± 3.2 -2.46 -2.43
Southern Ocean eastern Atlantic2 -1.9 ± 1.6 -1.16 -1.4
Southern Ocean western Pacific3 -4.3 ± 1.4 -1.4 -1.83

Table 4.1: Comparison of MARGO, PaleoMist_full, and GLAC1D_full mean NH
winter SST anomalies (LGM minus modern) for Southern Ocean key regions (◦C).
NH winter is defined as January-February-March.1defined as 30 to 60◦S, 70 to 30◦W,
2defined as 30 to 60◦S, 0 to 20◦E,3defined as 30 to 60◦S, 145◦E to 150◦W.

NH in GLAC1D_full and PaleoMist_full (Figure 4.3). The global ∆SST during

LGM (average over 22-19 kyr BP) is -2.18 and -2.15 ◦C for GLAC1D_full and

PaleoMist_full, respectively. These results are around 1 ◦C warmer than cooling

3.14 ± 0.29 ◦C reconstructed by Tierney et al. (2020b). During the NH winter,

PaleoMist_full and GLAC1D_full are consistent with MARGO (MARGO, 2009)

over the Southern Ocean western Atlantic. In the Southern Ocean eastern At-

lantic, PaleoMist_full shows more cooling than GLAC1D_full and aligns better

with MARGO. However, in the Southern Ocean western Pacific, MARGO indicates

colder temperatures than simulations done in this chapter (Table 4.1).

The simulated global cooling during the LGM (average over interval 22-19 kyr BP),

relative to PI, amounts to 6.12 ◦C in PaleoMist_full and 5.9 ◦C in GLAC1D_full.

These results are in agreement with data assimilation-based estimate of 6.05±0.43
◦C by Tierney et al. (2020b), the data assimilation-based estimate of 6.75 ±0.48
◦C by Osman et al. (2021), and the model-based estimate of 6.2 ◦C in Willeit et al.

(2022). However, Annan et al. (2022) reconstructed a smaller GMST anomaly

(LGM-PI) of 4.5±0.9 ◦C. PaleoMist_full depicts a colder LGM GMST (by approx-

imately 0.5 ◦C) than GLAC1D_full due to higher ice sheet altitudes. This 0.5 ◦C

difference is more than the difference between the 6.12 and 5.9 ◦C anomalies because

of the difference in GLAC1D_PI and PaleoMist_PI temperatures.

During BA, GLAC1D_full oceans are warmer than PI in most regions (Figure 4.3)

due to an abrupt AMOC shift (Figure 4.2e), leading to an abrupt increased temper-

ature at the end of BA. The main differences between full forced simulations occur

during BA due to significant FW flux differences (see Figure A.7) and very different

AMOC (Figure 4.2e and f). GLAC1D includes significant ice volume loss during BA

in the North Atlantic, associated with the major meltwater pulse 1A (MWP-1A)
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(Peltier, 2005), resulting in substantial FW influx (Figure 4.2a). GLAC1D loses

0.225×107km3 ice more than PaleoMist during BA. This configuration imparts a

diminished AMOC in GLAC1D_full (Figure 4.2e), correspondingly inducing lower

SSS in the North Atlantic relative to PaleoMist_full.

The AMOC alterations are often proposed as a main factor in abrupt climate shifts

during the last deglaciation (e.g., Lohmann and Schulz, 2000; Clark et al., 2002;

Knorr and Lohmann, 2007). AMOC strengthening during the BA compared to HS1

is observed in reconstructions (McManus et al., 2004; Ng et al., 2018) and modeling

studies (e.g., Liu et al., 2009). In GLAC1D_full, AMOC increases at the end of HS1

but experiences an off-mode transition at the onset of the BA period, followed by

a substantial resurgence at the end of the BA (Figure 4.2e). The sudden reduction

in AMOC during BA is common in the transient simulations prescribing GLAC1D

(e.g., Broecker, 2002; Clark et al., 2012; Figure 4.4). In PaleoMist_full, AMOC has

an abrupt increase and reduction at the end of HS1. It increases considerably at the

onset of BA and is almost stable by the end of BA (Figure 4.2f). In both simulations,

the abrupt strengthening of AMOC occurs before BA. As shown in Figure 4.2 for

different simulations, the timing of the abrupt changes in the AMOC depends on

the FW flux. Obase and Abe-Ouchi (2019) suggested that the gradual increase in

atmospheric CO2 during HS1 may cause a weakening of stratification of the North

Atlantic, which results in an abrupt rise in the AMOC during the BA transition.

Converse to BA, McManus et al. (2004) indicated AMOC was weak during YD. In

GLAC1D_full, AMOC after the overshoot decreases gradually during YD, while in

PaleoMist_full, it experiences variations and an abrupt reduction (Figure 4.2e and

f).

When comparing the evolution of North Atlantic SST in the simulations with a

corresponding marine climate record (Waelbroeck et al., 2001), PaleoMist_full sim-

ulation reflects the warming and cooling patterns over the North Atlantic during

BA and YD periods. In contrast, the GLAC1D_full simulation suggests cooling

during the BA, followed by a sudden increase and decrease, and relatively stable

temperature during YD (Figure 4.5a-c).

For the BA/YD sequence in GMST, the Shakun and Osman reconstructions show a
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Figure 4.4: (a) Comparision of AMOC at 26◦ N between GLAC1D_full, Pale-
oMist_full and transient simulations conducted by Bouttes et al. (2023) and Kap-
sch et al. (2022). (b) GMST for GLAC1D_full and Bouttes et al. (2023). Note
that there are different Y-axis for GLAC1D_full and Bouttes et al. (2023) in (b).

"warming-cooling-warming" sequence in global mean surface temperature (GMST;

Figure 4.5d). In GLAC1D_full, the transition from BA to YD is also seen, fol-

lowing the AMOC pattern (Figure 4.2e and g). If the abrupt reduction and over-

shoot during BA are ignored, GLAC1D_full shows a "warming-cooling-warming"

sequence, but this sequence is late with respect to the reconstructions (Figure 4.5d).

Moreover, the warming of the BA in GLAC1D_full matches neither NGRIP nor

DomeC temperature records (Figure 4.5a and b). Comparing Bouttes_GLAC1D

and GLAC1D_full, AMOC shifts to the weak mode simultaneously at the onset of

BA in both simulations. Still, the timing and magnitude of overshoot of AMOC at

the onset of YD is mostly a model-dependent feature, and consequently, the GMST

trajectory is different in GLAC1D_full (Figure c4.4).

Conversely, GMST within the PaleoMist_full scenario follows mainly GHGs (Fig-
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ure 4.2h), with some shorter variations (≈ 0.25 ◦C) at the onset of the BA (warming-

cooling-warming) occurred much earlier than reconstructions (Figure 4.5d). More-

over, there is a minor short-term cooling (≈ 0.1 ◦C) during the YD, which is not com-

parable with the reconstruction cooling. Generally, a "warming-stable-warming"

sequence from -15 to -12.5 kyr BP is observed in PaleoMist_full for GMST and

temperatures in DomeC and NGRIP locations (Figure 4.5b and d).

Figure 4.6d-g indicates surface temperature anomalies between the BA and HS1 and

between YD and BA for both PaleoMist_full and GLAC1D_full. PaleoMist_full

shows a pronounced warming between the BA and HS1 and a moderate cooling

between YD and BA in the northern North Atlantic. The opposite is found for

GLAC1D_full with cooling between the BA and HS1 and warming between YD

and BA. The deglacial meltwater and its influence on AMOC affect the timing

of the two-step character "cold-warm-cold-warm" during the termination: For Pa-

leoMist_full, the HS1-stadial comes along with a weaker AMOC and a stronger

AMOC during BA (Figure 4.6a and b), in contrast to GLAC1D_full. The Pale-

oMist simulations replicate, at least qualitatively, the BA/YD sequence with respect

to reconstructions: a warming in Greenland and Antarctica in the BA, a cooling

northern North Atlantic, and a warming in Antarctica in the YD.

Finally, surface temperature field differences between PaleoMist_full and GLAC1D_full

(Figure 4.7) indicate a colder NH during HS1 and YD and warmer conditions in

PaleoMist_full relative to GLAC1D_full. Temperature variations exceeding 10 ◦C

highlight ice sheet reconstruction’s pivotal role in modeling regional climate states,

where greater elevation corresponds to lower temperatures. This pattern is evident

during LGM, HS1, YD, and BA in North America. Ice-sheet extent and topography

can influence local temperature gradients and the flow of air masses, alter pressure

gradients, and affect wind patterns (Figures A.8, A.9, and A.10 in Appendix A).

Furthermore, the temperature fields align with surface albedo patterns (Figure A.11

in Appendix A), such as during BA, where off-mode AMOC in GLAC1D_full fosters

increased sea ice and higher albedo within the North Atlantic region, resulting in a

substantial temperature anomaly of -10 ◦C relative to PaleoMist_full conditions.

45



4.4. Full-forced simulations: GLAC1D vs PaleoMist

Figure 4.5: (a) Evolution of temperature at NGRIP (Greenland), DomeC (Antarc-
tica), and SST at North Atlantic (NA87-22; Waelbroeck et al., 2001), (b) Evolution
of temperature at NGRIP, DomeC, and SST at North Atlantic in PaleoMist_full,
(c) Evolution of temperature at NGRIP, DomeC, and SST at North Atlantic in
GLAC1D_full, and (d) GMST anomaly from the early Holocene (defined as 11.5-
6.5 kyr BP) for GLAC1D_full, PaleoMist_full, Shakun et al. (2012), and Osman
et al. (2021). Data for NGRIP, DomeC, and NA87-22 in (a) are from Shakun et al.
(2012). North Atlantic index for SST in (b) and (c) is defined as an average over
50◦N-70◦N and 45◦W-0◦W. Discrepancies between Shakun et al. (2012) and Os-
man et al. (2021) reconstructions are due to utilizing different observation datasets,
background states, and methods. Note that there are different vertical axes for
different variables.
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Figure 4.6: AMOC stream function for GLAC1D_full and PaleoMist_full during
HS1, BA, and YD (a),(c), and (e). Near-surface temperature (2m temperature)
anomalies between BA and HS1 and between YD and BA for PaleoMist_full (d)
and (f) and GLAC1d_full (e)and (g), indicating the differences in the regional
temperature signatures. The shown variables are averaged over the defined intervals.
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Figure 4.7: Surface temperature (2m temperature) differences between
GLAC1D_full and PaleoMist_full for LGM, HS1, BA, and YD.
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Chapter 5

Paleoclimate Data Assimilation: An

ensemble Kalman filter for the Last

Deglaciation

To address the second objective of this dissertation, this chapter presents an on-

line DA technique for implementation over the last deglaciation using CLIMBER-X

(Section 3.1) and LESTKF (Section 3.3). At the time of this study, only Os-

man et al. (2021) have used DA for the reconstruction of the past 24,000 years.

Their method employs an offline ensemble square root Kalman filter (Tierney et al.,

2020b), which combines prior climate states derived from the iCESM (Hurrell et al.,

2013) model simulations with proxy observation data. This approach produces a

posterior ensemble of climate states that better reflects past climatic conditions.

Osman et al. (2021) aimed to address the Holocene temperature conundrum (Liu

et al., 2014) and demonstrated that temperature variability over the last deglacia-

tion was primarily influenced by two key climatic mechanisms: radiative forcing

from ice sheets and GHGs, and changes in ocean overturning circulation combined

with seasonal insolation.
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5.1 Observations

The dataset provided by Shakun et al. (2012) is used as observations in the data

assimilation system. The dataset includes well-dated temperature records from the

last glacial period, including sixty-seven records from the ocean, interpreted as SST,

and thirteen records for temperatures at the land surface. The dataset contains

the absolute temperature values of each proxy site (green dots in Figure 5.2), the

published age, and the corresponding errors of the age model (σ).

For the reconstruction of the early Holocene global mean surface temperature

(GMST) anomaly (11.5-6.5 kyr BP; ∆GMST), Shakun et al. (2012) first project

the dataset onto a 5◦ × 5◦ grid, then linearly interpolate it to a 100-year resolution

and integrate it as area-weighted averages. The details of the age control, proxy

temperatures, and uncertainty analysis are explained in Shakun et al. (2012). As

the spatial resolution of this reconstruction corresponds to that of CLIMBER-X, a

comparison of the simulated trajectory with Shakun et al.’s reconstruction can be

made with ease.

Since the dataset does not contain the surface temperature errors for the proxy

sites, the age model uncertainties are translated into temperature uncertainties. To

obtain the temperature uncertainty at time t for each record, the corresponding

temperature at t − σ and t + σ is subtracted from the temperature of t, and the

absolute average of these variances is taken as the temperature uncertainty in t. Fi-

nally, the average temperature uncertainties over all records were taken to represent

the vector of observational errors in the DA system for every 100 years.

5.2 Experimental Design

The combination of CLIMBER-X with PDAF can simultaneously run the transient

simulation and DA without restarting the model. Two experiments are performed.

Exp_GLAC1D uses GLAC1D (Tarasov et al., 2012) for the ice sheet reconstruc-

tion, bathymetry, and land-sea mask while a new ice sheet reconstruction, PaleoMist

(Gowan et al., 2021), is employed in Exp_PaleoMist. In both experiments, GHGs

(Figure A.1) and orbital forcing are taken from Köhler et al. (2017) and Laskar et al.
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(2004), respectively. The transient simulations start at 25 kyr BP with PI equilib-

rium and then switch to LGM boundary conditions. The model is subsequently run

until the year 6.5 kyr BP using prescribed time-varying topography, bathymetry,

ocean, GHGs, and orbital forcing. Adequate equilibrium and representation of the

climate states at 22 kyr BP are achieved after three thousand years.

In the DA setup, data are assimilated into the model every 100 years from 22 to

6.5 kyr BP, which means that the DA system consists of 156 cycles. An implicit

assumption in a DA system for the optimal combination of model predictions and

observations is that data and model errors are random with a mean of zero (i.e.,

unbiased), indicating the importance of identifying and correcting observational er-

rors before implementing DA (Dee and Da Silva, 1998; Dee, 2005). In order to

avoid systematic errors, the state vector containing the field updated by DA is ini-

tialized by yearly-averaged surface temperature anomalies from the early Holocene

(∆ST) at the last year of 100-year intervals in which the observation information

is available (Figure 5.1). The values of early Holocene are taken from the free run,

and the prognostic variable, skin temperature, is used to calculate the yearly aver-

age surface temperature. Another advantage of assimilating anomalies is that the

DA results can be easily compared with the GMST reconstruction of Shakun et al.

(2012), which is presented as an anomaly from the early Holocene.

Figure 5.1: Schematic view of the DA system for the first two cycles.
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In the DA system, the observation operator H in Eq (3.3) is a simple transfor-

mation matrix because the observation and the state vector have the same unit.

This approach in paleoclimate DA is known as indirect DA (Li, 2014). Indeed, H

extracts ∆ST at the observed states and subtracts the mean to obtain the analysis

states. Moreover, the DA system is online (Okazaki et al., 2021), estimating the

time-averaged state and initial condition for subsequent DA cycles (Figure 5.1).

Accordingly, an increment term is computed as Xka − Xkprior and added to the

model field to calculate the state of the next time step. In other words, the model

has an updated (or corrected) initial field for integration through the next 100 years

until the next update for the initial condition.

Many studies demonstrate that the predictability of surface temperatures, typically

captured by most proxies, extends beyond an annual timeframe (e.g., Collins, 2002;

Doblas-Reyes et al., 2013). Consequently, in principle, online DA is expected to

outperform offline DA when the model exhibits predictability that surpasses the

averaging time represented by observations. This advantage arises from the ability

of online DA, particularly in EnKF-based methods, to utilize more accurate initial

conditions. To effectively leverage information from initial conditions with online

DA, models must incorporate slowly changing components, such as the ocean model

(Okazaki et al., 2021). Matsikaris et al. (2015) suggest when the computational

cost of online and offline methods is comparable, the online approach is generally

preferable due to the temporally consistent states it offers. Given that CLIMBER-

X incorporates an ocean component and is characterized by its efficiency as a fast

model, the online DA approach is opted for. Furthermore, the online DA provides

the added benefit of enabling us to evaluate the performance of CLIMBER-X in

simulating variables beyond surface temperature.

Here, the DA system has 16 ensemble members, and the localization radius is 5000

km. The size of the ensemble was chosen based on the computational cost. This

choice is also consistent with Bhend et al. (2012), who have shown that an ensemble

size of 15 or more is sufficient to constrain the simulations with the available proxy

information.

Further, the optimal localization radius is determined by comparing experiments
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with different radii. The localization radius is an important factor, usually tuned

individually for each application in the DA methods applying localization. The

previous studies based on the observation network, prior states, their DA methods,

and the goal of their reconstruction define their criteria for the optimal radius. For

example, Okazaki et al. (2021) employs an EMIC for their online DA experiments

and uses a localization radius ranging from 2000 km to 8000 km. However, some

other studies that conduct the offline DA select a relatively large radius localization

such as 12000 and 25000 km (e.g., Tierney et al., 2020b; Osman et al., 2021; King

et al., 2021; Erb et al., 2022). The key factor guiding the choice of radius is its

impact on the surface temperature field. In Figure 5.2, the DA result of the surface

temperature field after the first cycle of four DA experiments with radii of 2500,

5000, 7500, and 10000 km is compared. The data assimilation effect appears to

be too localized for a radius of 2500 km. Using a radius of 5000 km, almost all

grid points (99%) are influenced by at least one observation while avoiding large-

distance covariances beyond this radius. For the 7500 and 10000 km radii, the DA

combined information from locations that are too distant, which leads to reduced

effect, e.g., over Greenland, but also spurious effects like the rather uniform cooling

of the Antarctic.

Figure 5.2: Effect of DA increment at first analysis step on the surface temperature
field using 2500, 5000, 7500, and 10000 km radius.
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5.3 Stochastic model component

In an ensemble-based DA system, the ensemble members represent the model un-

certainty (Evensen, 2003). Since CLIMBER-X is a deterministic model (Palmer

et al., 2010), ensemble members are integrated in parallel, with each ensemble

member running on a single compute node equipped with 2×18-core CPUs on a

high-performance computer (Cray CS400 Xeon E5-2697V4 3.60 GHz), and random

perturbations are added to these model states at each model time step to obtain

sufficient ensemble dispersion. The surface temperature values from a climate run

in the TraCE-21000 project (He, 2011) are used to generate spatially-correlated

perturbations as follows. First, the dataset is linearly interpolated to the spatial

resolution of CLIMBER-X. Then, snapshots of the surface temperature values from

22 to 6.5 kyr BP every 100 years are collected in a matrix Z with 156 columns, each

containing the anomaly values in the grid points at a given time. After subtracting

the temporal mean, the matrix Z′ is obtained. Then, the singular value decomposi-

tion Z′ = VSW is computed, yielding 155 empirical orthogonal functions (EOFs)

stored in the columns of V, while S is a diagonal matrix holding the corresponding

singular values. Then, following second-order exact sampling (Pham, 2001), the

matrix of ensemble perturbations is computed as

∆X =
√
m − 1SVΩT . (5.1)

Here m is the ensemble size, and Ω is a random matrix that preserves the mean

and the covariances. Consequently, the ensemble perturbations are added to the

ensemble members following the autoregressive method (Box et al., 2015) to make

the model stochastic, providing an ensemble scatter. The perturbations are added

to a prognostic variable named near-surface atmosphere temperature (tam) as

tamk = tamk−1 + εk, (5.2)

where εk is perturbation at time k defined as (1−α)∆xk−1+α∆xk. ∆x, containing

perturbations for the grid points, is one column of matrix ∆X. Therefore, ∆X

has 16 different columns that are used by ensemble members. α is a user-defined
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coefficient, which is equal to 0.5 in the experiments. For the prior step, Figure 5.3

shows the ensemble spread for ∆GMST. This perturbation method yields that the

standard deviation of the ensemble spread for both experiments varies between ≈

0.2◦ and 0.4◦C during the experiments.

(a) (b)

Figure 5.3: Ensemble members (coloured lines) and ensemble mean compared to
(Shakun et al., 2012) in the prior step in (a) Exp_GLAC1D and (b) Exp_PaleoMist.

5.4 Results

This section starts by comparing the outcomes of free model runs based on the

GLAC1D and PaleoMist ice sheet reconstructions without DA. Thereafter, the effect

of DA on ∆GMST trajectories is analyzed. Lastly, how the DA solution can alter

the spatial patterns of the surface temperature fields is shown.

5.4.1 Free Runs

Figure 5.4a shows the absolute values of GMST for free runs with GLAC1D and

PaleoMist. The different time intervals LGM, Oldest Dryas (OD), BA, YD, and

early Holocene are used here as in Shakun et al. (2012). Both trajectories are

nearly identical during the LGM. However, during the rest of the time, the Pale-

oMist simulation shows a cooler GMST, except for the beginning of the BA interval.

Moreover, the GMST in the PaleoMist simulation increases more steadily, while in
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the GLAC1D simulation, there are two abrupt shifts in the GMST at the begin-

ning and end of the BA. The differences in the magnitude, timing, and speed of

the warming and cooling trends during BA and YD are evident between the two

free simulations, suggesting that ice sheet reconstruction significantly impacts the

transient simulation.

Comparing the transient simulations with the GMST reconstruction of Shakun et al.

(2012), which has been projected to a 5◦×5◦ grid (Figure 5.4b), the ∆GMSTs simu-

lated by the model are about 1.3-1.5 times colder than the proxy-based reconstruc-

tion during the LGM. Shakun et al. (2012) and Exp_PaleoMist_Free show a con-

tinuous warming trend during BA, while this trend is disrupted in Exp_GLAC1D

by a strong cooling followed by remarkably rapid warming. The trajectories of

Shakun et al. (2012) and Exp_PaleoMist_Free behave similarly over the YD. In

contrast, Exp_GLAC1D shows a strong decrease in ∆GMST beginning with the

onset of the YD.

(a) (b)

Figure 5.4: a) GMST from free runs of the last deglaciation using the different ice
sheet reconstructions, GLAC1D and PaleoMist. b) Comparison of GMST anomaly
from the early Holocene of the free runs compared to Shakun et al. (2012).

5.4.2 Trajectories after DA

After applying the DA, the ensemble members are evaluated to ensure the DA sys-

tem functions. The standard deviation of the ensemble is reduced between ≈ 20%

and 70% in both experiments during DA cycles, showing that the DA system effi-
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ciently influences the ensemble members. Moreover, the mean surface temperature

anomaly from the early Holocene (∆MST) is computed before and after applying

DA by averaging over the proxy sites and comparing it to the proxy-based ∆MST

(Figure 5.5). The DA results are mainly between the observations and the simu-

lated ∆MST. In Exp_GLAC1D (Figure 5.5a), the intensity of the abrupt changes

in BA and YD declines, and ∆MST aligns more closely with the observations until

the end of YD. As with Exp_PaleoMist, the DA trajectory exhibits slightly higher

temperatures than both observation and the ensemble mean of the prior during

LGM. However, the trajectories closely follow the same pattern for BA and YD in

Exp_PaleoMist.

(a) (b)

Figure 5.5: Mean surface temperature change (∆MST) calculated by averaging over
the proxy locations for (a) Exp_GLAC1D and (b) Exp_PaleoMist. The orange,
green, and black lines illustrate trajectories for observation, DA ensemble, and prior
ensemble means, respectively.

To further analyze the deglacial dynamics, Figures 5.6 and 5.7 display the net North

Atlantic FW, global SSS, AMOC at 26◦N, and ∆GMSTs for Exp_GLAC1D and

Exp_PaleoMist, respectively. Furthermore, the ensemble mean of DA and prior

states is compared with the free run and a DA-based reconstruction conducted

by Osman et al. (2021) (Figures 5.6d and 5.7d). Comparing the prior ensemble

mean and the free run in Exp_GLAC1D (Figure 5.6d), the abrupt warming shift

in the onset of YD reaches its maximum with a 300 year delay. However, the prior

ensemble mean and free run trajectories are similar in Exp_PaleoMist, except for
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a slightly warmer prior mean state during BA (Figure 5.7d).

Figure 5.6: North Atlantic FW (a), SSS (b), AMOC at 26◦ north (c), and ∆GMSTs
based on the model field (d) for Exp_GLAC1D. Different colors in (a), (b), and (c)
correspond to ensemble members. The red line in (d) represents ∆GMST for the
free run. The orange line in (d) is the proxy reconstruction of ∆GMST by Shakun
et al. (2012) projected to 5◦ × 5◦ resolution.The blue line in (d) is the DA-based
reconstruction of ∆GMST by Osman et al. (2021) .

In both experiments, the average SSS during the LGM is about one psu higher than

during the early Holocene (Figures 5.6b and 5.7b), which is due to FW added to

the ocean by melting ice sheets (Broecker, 2002; Clark et al., 2012). An increase in
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FW leads to a decrease in AMOC strength. For example, the sudden increase in

FW at the beginning of BA in Exp_GLAC1D leads to an off-state in AMOC with

a rapid increase at the end of the BA (Figure 5.6a and c) which is more difficult to

reconcile with proxy data (Lohmann and Schulz, 2000).

When global mean temperatures are considered, the DA solution in Exp_GLAC1D

closely resembles the prior states (Figure 5.6d), but the warming trend reaches its

maximum at the beginning of YD, with a reduction of approximately 0.2 degrees

compared to the pre-DA state. A robust cooling trend is also observed in YD.

These abrupt changes are consistent with AMOC variations. For Exp_PaleoMist

(Figure 5.7d), the DA trajectory closely follows the global temperature of the prior

state, implying that the paleo-observations have a minor effect on ∆GMSTs during

the last deglaciation when using the PaleoMist reconstruction. The DA, prior,

and free trajectories exhibit two sudden upward shifts during the early Holocene

in Exp_PaleoMist. This unrealistic feature can be attributed to the low temporal

resolution of the PaleoMist reconstruction, which is 2500 years.

When comparing the DA solutions with Osman et al. (2021) reconstruction (Osman-

DA; Figures 5.6d and 5.7d), the DA ∆GMST trajectories are generally warmer

then Osman-DA during the deglaciation. Specifically, when focusing on BA and

YD, the timing and magnitude of these events in Exp_GLAC1D differ notably

from the Osman-DA, but the DA pattern in Exp_PaleoMist is similar to that in

the Osman-DA. However, the maximum warming in BA for Exp_PaleoMist occurs

approximately 100 years earlier than in the Osman-DA. It is clear that discrepan-

cies between the results and Osman-DA are due to utilizing different observation

datasets, background states, and methods.

5.4.3 Surface temperature fields after DA

The DA has a significant effect on the pattern of the evolution of deglacial tem-

perature. Figure 5.8 shows that the effect of DA is more pronounced at mid-

and high-latitudes (from 3 ◦C to more than 5 ◦C) but small at low latitudes

(less than 2 ◦C). When Exp_GLAC1D is compared with Exp_PaleoMist, it is

observed that the DA system has a different effect in some regions due to the use
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Figure 5.7: North Atlantic FW (a), SSS (b), AMOC at 26◦ north (c), and ∆GMSTs
based on the model field (d) for Exp_PaleoMist. Different colors in (a), (b), and (c)
correspond to ensemble members. The red line in (d) represents ∆GMST for the
free run. The orange line in (d) is the proxy reconstruction of ∆GMST by Shakun
et al. (2012) projected to 5◦ × 5◦ resolution.The blue line in (d) is the DA-based
reconstruction of ∆GMST by Osman et al. (2021).

of different ice sheet reconstructions. For example, in Exp_GLAC1D during YD

(Figure 5.8c), Antarctica transitions to a colder state after DA, while it becomes

warmer in Exp_PaleoMist (Figure 5.8f). During BA, the discrepancies between

the DA experiments are remarkable. In contrast to Exp_GLAC1D (Figure 5.8b),
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Exp_PaleoMist (Figure 5.8e) shows strong cooling over the North Atlantic and

warming over Antarctica and the Southern Ocean. Moreover, after DA, both exper-

iments improve the Atlantic-Pacific seesaw phenomenon (e.g., Hoskins and Karoly,

1981; Kiefer et al., 2002; Romanova et al., 2006), characterized by the opposing

temperature anomalies observed in the North Atlantic and North Pacific Ocean

regions, except for the BA in Exp_GLAC1D.

Figure 5.8: ∆ST anomaly (DA minus Prior) in LGM, BA, and YD. (a), (b), and
(c) show anomaly for Exp_GLAC1D and (d), (e), and (f) for Exp_PaleoMist. The
green dots indicate the observation locations.

The BA is marked by a pronounced warming in the NH, particularly over Greenland

(Buizert et al., 2014). Comparing the ∆GMST anomaly of BA against that of LGM

(Figures 5.9a, d and 5.10a, d), the warming over Greenland and the North Atlantic

increases by almost 5 ◦C with DA in both experiments. However, there are some

cooling shifts over the North Pacific (Figures 5.9d and 5.10d), which is more evident

in Exp_GLAC1D.
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Figure 5.9: ∆ST anomalies field for different time intervals in Exp_GLAC1D for
before DA’s implementation (a), (b), and (c) and after DA (d), (e), and (f).

In contrast to the BA, the average temperature in the NH decreased by several

degrees during the YD, resulting in a return to near-glacial conditions. In the

SH, the YD temperature did not vary significantly and was comparable to or even

slightly warmer than BA (Shakun and Carlson, 2010; Stenni et al., 2011). These

YD properties are enhanced by the implementation of DA. Figures 5.9f and 5.10f

show that the NH climate in YD changes to a colder state after DA than in BA.

Nevertheless, this change is more pronounced in Exp_PaleoMist. Without DA, the

North Atlantic temperature drop between BA and YD could not be simulated.

5.5 Discussion

To overcome the computational challenges associated with long-term DA experi-

ments in paleoclimate studies, this study has coupled CLIMBER-X with PDAF.
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Figure 5.10: ∆ST anomalies field for different time intervals in Exp_Paleomist for
before DA’s implementation (a), (b), and (c) and after DA (d), (e), and (f).

The DA experiments covering a span of 16500 years can be completed in approx-

imately 40 hours. PDAF efficiently computes the DA update at each DA cycle in

less than one second.

The choice of localization radius is an important factor in the DA system, and the

optimal value was determined through trial and error. The optimal localization

radius depends on various factors, including ensemble size, the spatial distribution

of observations, and characteristics of observation errors (Kirchgessner et al., 2014).

Ying et al. (2018) has shown that the optimal localization radius remains unaffected

by properties of a quasigeostrophic model (Smith et al., 2002), such as resolution,

as long as the model accurately represents the underlying dynamical processes. As

discussed in the Experimental Design section, the 5000 km radius was selected to

ensure the optimal impact of observations while avoiding unrealistic influences from

distant observations on individual grid points. This radius mainly preserves the
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effect of Greenland’s observations, which are crucial for reconstructing the North

Atlantic. The choice of localization radii for DA experiments involving CLIMBER-

X and PDAF may vary depending on the specifics of the observation network.

A climate system consists of slowly varying components (e.g., ocean, cryosphere,

land vegetation) and fast-varying components, primarily the atmosphere. The de-

terministic models, including CLIMBER-X, typically operate in a deterministic

framework, where the averaged climate states are simulated based on deterministic

mathematical equations, fixed initial conditions, external forcings, and parameter-

izations of fast-varying components (Flato et al., 2014). In contrast, stochastic

climate models acknowledge the importance of considering the rapid fluctuations

and introduce randomness to capture uncertainties and natural variability in the

climate system (Palmer, 2012). Hasselmann (1976) emphasizes the significance of

incorporating high-frequency elements in numerical models, as slow climate changes

are defined as the response to ongoing random excitation by fast-varying component

perturbations. By perturbing the near atmospheric surface temperature as a rapid-

varying variable in the CLIMBER-X model, it has been transformed into a stochas-

tic model, allowing for the representation of natural variability and uncertainties.

This approach not only leverages the computational efficiency of CLIMBER-X but

also provides more realistic background states for the DA system and avoids the

ensemble collapses to a single state.

Climate models, including CLIMBER-X, are sensitive to FW fluxes (Kageyama

et al., 2010; Otto-Bliesner and Brady, 2010; Stouffer et al., 2007), and the AMOC

depends on FW forcing at locations where deep water forms (Stouffer et al., 2006).

Accordingly, changes in AMOC are often considered to have caused abrupt climate

changes during the last deglaciation (e.g., Lohmann and Schulz, 2000; Clark et al.,

2002; McManus et al., 2004; Knorr and Lohmann, 2007). GLAC1D contains a

significant ice volume loss during BA (Tarasov et al., 2012), associated with a

pronounced MWP-1A, whereas PaleoMist (Gowan et al., 2021) does not contain

a pronounced loss of deglacial meltwater during the BA. This is the main reason

for the discrepancies between Exp_GLAC1D and Exp_PaleoMist. Moreover, ice

sheet heights influence atmospheric and oceanic circulation (e.g., Löfverström et al.,
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2014; Sherriff-Tadano et al., 2018), which may contribute to the disparities between

simulations using GLAC1D and PaleoMist. Due to variations in methodologies,

PaleoMist estimates the ice volume and ice sheet heights differently from GLAC1D.

Mentioning briefly, PaleoMist calculates ice sheets using the program ICESHEET,

which assumes that the ice sheet is in equilibrium (Gowan et al., 2016). In contrast,

GLAC1D calculates Antarctica and North American ice sheets based on an ensemble

average of several thousand ice sheet model simulations that fit constraints such as

Holocene sea level changes and present-day uplift rates (Tarasov et al., 2012; Briggs

et al., 2014).

The minor effect of DA on GMST trajectories could be attributed to the limited

number of observations and the long period between DA cycles. The time gap

between successive observations, 100 years, may exceed the model’s predictability.

Consequently, the prior ensemble loses the updated initial condition information

entirely. This point is also mentioned by Matsikaris et al. (2015) and Acevedo

et al. (2017) while comparing online and offline approaches. Therefore, in the ex-

periments, GMST trajectories are mainly driven by external forcing, including ice

sheets, GHGs, and orbital forcings. Increasing the frequency of model updates by

employing high-temporal-resolution, well-distributed datasets covering more grid

points can potentially improve the efficiency and impact of DA on GMST trajecto-

ries. However, the ∆GMST trends for prior and DA in Exp_PaleoMist are similar

to the Shakun et al. reconstruction and Osman-DA during BA and YD. This indi-

cates that the choice of ice-sheet reconstruction resulting in different prior states is

consequential in the DA system.

Osman et al. (2021) employ an offline EnSRF approach (Tierney et al., 2020b) and

assimilate the different types of geochemical proxies for SST (Tierney et al., 2020b)

directly using Bayesian proxy forward models (e.g., Tierney and Tingley, 2014).

They also draw the prior states from the separate time slice simulations conducted

by the isotope-enabled Community Earth System Model (iCESM; Brady et al.,

2019). These methodological disparities between their DA setup and ours explain

the differences between the results. Nevertheless, Exp_PaleoMist is roughly consis-

tent with Osman-DA regarding the magnitude and speed of the warming-cooling-
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warming tendency over BA and YD. This suggests that despite the differences in

methodology and background states, there is some agreement regarding the general

pattern of GMST changes during those time intervals.

In contrast to the effect of DA on GMST trajectories, DA has changed the spatial

pattern of the surface temperature fields significantly. This implies that the impact

of DA is more prominent at regional scales rather than at the global mean scale.

The point that the climate sensitivity of CLIMBER-X is 3.3 K, which drops in the

middle range for the Earth system models (Willeit et al., 2022), suggests that the

model is responsive to CO2 forcing and insolation. As a result, the main drivers in

the low latitudes, such as GHG concentrations and insolation, dominate in shaping

the temperature patterns in those regions. Consequently, the effect of DA is less

pronounced in low latitudes where the model has already captured these primary

drivers well.

However, in high latitudes, particularly over the North Atlantic and Greenland,

where the ice sheet heights, FW pattern, and AMOC play significant roles in at-

mospheric and oceanic circulations and temperature patterns, DA enhances the

characteristics of BA and YD. This denotes that the assimilation of observational

data has helped skillfully to have more realistic temperature patterns and climate

variability during these specific periods.

Additionally, it is worth mentioning that DA has enhanced the Atlantic-Pacific see-

saw pattern, mainly for Exp_PaleoMist, indicating an improved representation of

the coupled atmosphere-ocean dynamics in these regions. Several studies have re-

ported this heterogeneous phenomenon in both model and data sets during glacial

and deglacial periods (e.g., Kiefer et al., 2002; Meyer et al., 2017; Wang et al.,

2021). Different factors, including oceanic and atmospheric circulation patterns,

heat transport, and interactions between the oceans and atmosphere, contribute to

the evolution and endurance of this seesaw pattern (e.g., Romanova et al., 2006;

Deser et al., 2010; Delworth et al., 2017; Gong et al., 2019). Therefore, the assim-

ilation of observational data has contributed to a more realistic simulation of the

interhemispheric temperature gradient and associated oceanic circulation patterns.
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Assimilation of sub-layers

temperatures

In the context of online DA for paleoclimate reconstruction, slow components like

the ocean are critically important. Online DA estimates both time-mean states

and initial conditions for subsequent DA cycles, which leverages the inherent pre-

dictability of the system. The ocean, with its relatively slow dynamics, significantly

extends the predictability of the climate system compared to the atmosphere alone.

This extended predictability is crucial because it allows the DA system to maintain

more accurate initial conditions over longer periods, thereby improving the over-

all performance of the online DA compared to offline DA, which only estimates

time-mean states without updating initial conditions. It is also unclear how well

the variability in a subsurface ocean, where prominent predictability resides (e.g.,

Chikamoto et al., 2013), can be reconstructed using online-DA assimilating only

surface variables, which most proxies represent.

In addition, McManus et al. (2004) find that during the coldest periods of the

deglaciation, specifically around 17.5 kyr BP with HS1, the AMOC nearly or com-

pletely collapsed. This period was marked by a massive discharge of icebergs, which

introduced significant amounts of FW into the North Atlantic, destabilizing the wa-

ter column and weakening the AMOC. Similarly, around 12.7 kyr BP, during the

YD cold event, there was a sharp but brief decline in the AMOC. These events high-

light the sensitivity of the AMOC to FW inputs from melting ice sheets. Following
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these cold periods, McManus et al. (2004) indicate rapid resumption and accelera-

tion of the AMOC, which coincided with the two most significant regional warming

events of the deglaciation. The rapid reinvigoration of the AMOC during these

times suggests a strong link between AMOC activity and abrupt climate warming.

The BA warming period, beginning around 14.7 kyr BP, marked a significant resur-

gence of the AMOC, likely contributing to the accelerated melting of ice sheets and

rising sea levels. Moreover, Max et al. (2022) identifies a clear link between sub-

surface warming and weakened AMOC. During periods of reduced AMOC, there is

a build-up of subsurface heat, which eventually triggers the ice-sheet instabilities

that characterize HEs. The authors provide detailed evidence from geochemical

proxies and age models to support this relationship, emphasizing the role of ocean

circulation changes in initiating these abrupt climate events.

Considering the importance of understanding subsurface ocean dynamics in the

online DA, AMOC, and climate variability, this chapter aims to develop the DA

technique presented in Chapter 5 to assimilate the subsurface temperatures into the

simulation of the last deglaciation.

6.1 Observations

No real data sets for temperature ocean layers covering the last deglaciation ex-

ist. Given that the PaleoMist outperforms GLAC1D in the simulation of the last

deglaciation (Chapter 4), the subsurface temperature of Paleomist_full (Section

4.2) is used as a basis for constructing the observation network in this chapter. In ad-

dition, the signal of AMOC strength is added to the temperature layers (TempLayer)

of Paleomist_full as

TempLayer = TempLayer + TempLayer × Coefficient, (6.1)

where Coefficient is estimated based on 231Pa/230Th ratio provided by McManus

et al. (2004). 231Pa/230Th is anticorrelated by AMOC strength, meaning that by

increasing the ratio, AMOC weakens (McManus et al., 2004; Figure 6.1). Figure B.1

compares the observation created in this chapter with PaleoMist_full. The error of
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0.5 ◦C is considered for all layer temperatures. This uncertainty is comparable with

the ensemble standard deviation (≈0.3-0.5) in DA experiments in this chapter.

Figure 6.1: 231Pa/230Th ratio provided by McManus et al. (2004) and the coefficient
estimated based on this ratio.

6.2 Experimental Design

Two sets of transient deglaciation simulations, Exp_GLAC1D and Exp_PaleoMist,

are conducted, each consisting of two simulations: with DA (GLAC1D_DA and

PaleoMist_DA), without DA (GLAC1D_Free and PaleoMist_Free). Version 2 of

CLIMBER-X (https://doi.org/10.5281/zenodo.6877358), which is slightly different

from Version 1 employed in Chapter 5, is made stochastic following the method

in Section 5.3. Therefore, the model outputs may differ from the simulations in

Chapter 5 while the same forcings are applied to the simulations in both chapters.

As in Chapter 5, the DA experiments employ GLAC1D and PaloeMist for the ice

sheet reconstruction, bathymetry, and land-sea mask. Moreover, the simulations

are forced by GHGs and orbital parameters. Here, the transient simulations start

from the 18 kyr BP initial condition. In simulations with DA, the model is run until

14.7 kyr BP (before the BA period) with assimilating surface and subsurface ocean
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temperatures (temperature of 23 layers) conducted every 100 years and continues

until year 9 kyr BP without implementing DA. However, in simulations without

DA, the model is run from 18 ky BP to 9 ky BP without any DA implementation.

The method presented in Section 5.2 is followed for the DA. However, localization

is not used here because the temperatures of all ocean areas are assimilated into

the model, meaning that an observation exists at each ocean grid point. Therefore,

the DA algorithm is ESTKF (Section 3.3) and the state vector contains not only

surface temperature but also subsurface temperatures (22 layers).

6.3 Results and Discussion

6.3.1 Exp_GLAC1D vs Exp_PaleoMist

Figures 6.2 and 6.3 compare temperature trajectories before and after DA for

Exp_GLAC1D and Exp_PaleoMist, respectively. The DA results are mainly be-

tween the observations and the simulated temperatures for the upper and middle

layers. However, in deep layers, DA trajectories have more fluctuations and are

closer to the prior states. This pattern is more pronounced in Exp_PaleoMist.

In Exp_GLAC1D, it is evident that the green line, representing DA, shows generally

higher values, particularly during YD and the early Holocene, in North Atlantic FW

flux compared to the black line (GLAC1D_Free; Figure 6.4a). This suggests that

DA results in higher FW flux estimates. In the PaleoMist experiment (Figure 6.4b),

both lines are relatively similar, but the DA line exhibits a different trend during

YD and the onset of the early Holocene. Figure 6.5 indicates that DA considerably

increases the precipitation over the North Atlantic, resulting in more FW flux during

GLAC1D_DA. The changes in FW fluxes in GLAC1D_DA and PaleoMist_DA are

consistent with the precipitation and evaporation trend (Figure 6.5).

SSS is generally anti-correlated with FW. With an increase in FW, SSS decreases.

North Atlantic SSS shows considerable variability introduced by DA in the Exp_GLAC1D

(Figure 6.4c). The GLAC1D_DA and GLAC1D_Free display a noticeable decline

during the HS1 period. While GLAC1D_Free SSS rises to the level of HS1 dur-

ing YD, GLAC1D_DA can not exceed 32 psu due to more FW fluxes. In the
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Figure 6.2: Mean temperature for 23 layers of the ocean for Exp_GLAC1D. Layer A
is the surface layer (≈5 m), and Layer W is the deepest layer (≈5000 m). The layers
have different depths. The orange, green, and black lines illustrate trajectories for
observation, DA ensemble, and prior ensemble means, respectively.

Exp_PaleoMist (Figure 6.4d), both the DA and Free lines show a significant drop

in salinity during the HS1 and YD periods, which are consistent with FW forcing.

Many studies show that an influx of freshwater can lead to a weakening of the

AMOC (e.g., Lohmann and Schneider, 1999; Knorr and Lohmann, 2007; Zhang

et al., 2017; Haskins et al., 2020; Swingedouw et al., 2022; He and Clark, 2022).

The reduction in AMOC strength occurs because the added freshwater decreases

SSS, making the surface waters less dense and inhibiting the sinking process, which

is crucial for AMOC function. Consistent with FW and SSS, AMOC shifts to

the offline mode in Exp_GLAC1D (Figure 6.4e) at the onset of BA. AMOC in
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Figure 6.3: Mean temperature for 23 layers of the ocean for Exp_PaleoMist. Layer
A is the surface layer (≈5 m), and Layer W is the deepest layer (≈5000 m). The
layers have different depths. The orange, green, and black lines illustrate trajectories
for observation, DA ensemble, and prior ensemble means, respectively.

GLAC1D_DA can not recover during the rest of the simulation due to higher FW

flux. In Exp_PaleoMist (Figure 6.4f), both lines drop significantly during HS1 and

YD and increase abruptly at the end of HS1. However, the timing and magnitude

of PaleoMist_DA are different from PaleoMist_Free. The weak AMOC during

HS1 and YD in Exp_PaleoMist is in agreement with proxies analyzed by McManus

et al. (2004) (Figure 6.1).

Due to the shutdown of AMOC, Exp_GLAC1D can not simulate the warming

in the North Atlantic during BA (Figure 6.4g). DA can not help to capture the

warming/cooling/warming sequence in Exp_GLAC1D in the North Atlantic. Re-
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Figure 6.4: North Atlantic FW, North Atlantic SSS, AMOC at 26◦N, North Atlantic
SST and GMSST for Exp_GLAC1D (a),(c),(e),(g),(i) and for Exp_PaleoMist
(b),(d),(f), (h) and (j). HS1 as 18-14.7 kyr BP, BA as 14.7-13 kyr BP, and YD as
13-11.6 kyr BP. North Atlantic index for SSS and SST is defined as an average over
50◦N-70◦N and 45◦W-0◦W. Note that the vertical axes differ for Exp_GLAC1D and
Exp_Paleomist. North Atlantic FW flux encompasses precipitation-evaporation,
sea ice fluxes, land runoff, and liquid water flux melted from ice sheets.

garding Exp_PaleoMist (Figure 6.4h), DA slightly changes the timing of the abrupt

warming/cooling at the end of the HS1, but the temperature remains almost con-

stant during BA. Further, DA enhances the cooling and its duration during YD in

PaleoMist_DA.
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Figure 6.5: North Atlantic precipitation minus evaporation for Exp_GLAC1D (left)
and Exp_PaleoMist (right) during the last deglaciation. North Atlantic index is
defined as an average over 50◦N-70◦N and 45◦W-0◦W.

The global mean surface temperature (GMSST) panels (Figures 6.4i and 6.4j)

reveals that both the DA and Free lines show a gradual increase over time in

both experiments. GLAC1D_DA simulates GMSST with less variability than

GLAC1D_Free during BA and YD, but it can not replicate the warming/cool-

ing/warming in the time comparable with data sets (e.g., Shakun et al., 2012).

GLAC1D_DA peaks at the onset of YD, followed by cooling until the start of

the early Holocene. In the Exp_PaleoMist, in line with FW and AMOC, GMSST

trends are similar in Paleomist_Free and PaleoMist_DA. Both simulate abrupt

warming/cooling/warming sequences before the BA and in YD. However, the tim-

ing of these events in PaleoMist_DA (6.4j) is different. The events happen by a

delay of approximately 100 years in PaleoMist_DA.

6.3.2 DA using modified PaleoMist

As shown in the chapters 4 and 5, the ice sheet reconstruction is the main source

of uncertainty in the simulation of the last deglaciation, which can strongly influ-

ence the DA results. Figures 4.2h and 6.4j indicate that simulations employing

PaleoMist capture a warming/cooling/warming signal earlier than the BA/YD se-

quence. This section conducts some extra simulations to examine the possibility

of capturing BA/YD at the right time by manipulating PaleoMist ice sheet recon-

struction. PaleoMist presents ice sheets from 80 kyr BP to the present with a time

resolution of 2500 years. To generate the different FW forcing prescribed by ice
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sheets, the linear interpolation is first used to change the time resolution to 100

years, then the variables of PaleoMist are shifted 400, 500, and 1000 years towards

the present day and are saved in files named PaleoMist_400, PaleoMist_500, and

PaleoMist_1000, respectively. Figure 6.6 shows the simulations using these new

files as ice sheet reconstructions and compares them with PaleoMist_Free. The

stochastic version of CLIMBER-X is employed here to do simulations.

Figure 6.6: North Atlantic FW (a), global SSS (b), AMOC at 26◦N (c), and GMSST
(d) for PaleoMist_400, PaleoMist_500, PaleoMist_1000, and PaleoMist_Free.

The magnitude and variability of FW flux induced by the modified PaleoMists are

less than PaleoMist_1000, and the timing of FW is also different (Figure 6.6).
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Therefore, SSS, AMOC, and GMSST follow different patterns. The abrupt warm-

ing/cooling/warming sequence is not observed in PaleoMist_400, PaleoMist_500,

and PaleoMist_1000. These simulations present almost a continuous warming dur-

ing HS1. After a 0.5 ◦C increase, GMSST remains constant during BA and rises

from the onset of YD in PaleoMist_400 and PaleoMist_500. PaleoMist_1000 con-

tinues warming until 14 kyr BP but does not show notable cooling for in YD.

Figure 6.7: North Atlantic FW (a), North Atlantic SSS (b), AMOC at 26◦N (c),
North Atlantic SST (d) and GMSST (e) for PaleoMist_1000. North Atlantic index
for SST is defined as an average over 50◦N-70◦N and 45◦W-0◦W. The red line in (d)
presents North Atlantic SST derived from proxy NA87-22 (Shakun et al., 2012).

Since PaleoMist_1000 captures BA warming better, another DA experiment is here
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conducted employing PaleoMist_1000 (Figure 6.7). DA does not change consider-

ably the FW forcing in this experience (Figure 6.7a). Therefore, North Atlantic

SSS, AMOC, SST, and GMSST trends are similar in PaleoMis_1000 and Pale-

oMist_1000_DA. However, DA shifts the events, particularly for North Atlantic

SST. Figure 6.7d indicates that North Atlantic trends in PaleoMist_1000 and Pa-

leoMist_1000_DA, particularly over BA and YD, agree with a North Atlantic SST

proxy (Wang et al., 2021). There are two warm peaks in BA and cooling during YD

(Figure 6.7d). However, the abrupt reduction at the onset of the early Holocene is

not comparable with the proxy (Figure 6.7d).
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Final Considerations

7.1 Conclusions

This thesis uses the climate model CLIMBER-X to conduct the transient simulation

of the last deglaciation forced by ice sheet reconstruction, GHGs concentration,

and orbital parameters. Further, the PaleoMist ice sheet reconstruction is used

as a new boundary condition for the last deglaciation simulation. Moreover, this

study presents and develops an online DA technique for reconstructing the last

deglaciation. The research objectives formulated at the beginning of this thesis

guided the research documented in Chapters 4, 5 and 6 and a concise conclusion of

these chapters is given in the following:

1. To investigate the impact of a novel ice-sheet reconstruction on the

simulation of the last deglaciation and to examine the roles of GHGs

and orbital forcings in this context. (Chapter 4)

This study pioneers the use of the PaleoMist ice sheet reconstruction Gowan

et al. (2021) to simulate the last deglaciation, contrasted with the more tradi-

tional GLAC1D reconstruction (Tarasov et al., 2012; Briggs et al., 2014). In

both PaleoMist and GLAC1D simulations, LGM temperatures and southern

ocean Atlantic SSTs are consistent with data assimilation-based estimates of

Tierney et al. (2020b) and MARGO (2009), respectively.

Variations in sea level pressure, wind patterns, and surface temperatures,
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especially during the BA warm period, illustrate the different behaviour of

GLAC1D and PaleoMist. These differences are attributed to the varying con-

figurations, extents, and topographies of the ice sheets, affecting the atmosphere-

ocean circulation. It is shown that the pronounced warming in the northern

North Atlantic, which is a main characteristic of BA (Buizert et al., 2014), is

better captured by the PaleoMist simulation compared to GLAC1D in agree-

ment with previous studies (e.g., Bethke et al., 2012; Kapsch et al., 2022;

Bouttes et al., 2023), it is found that the timing and magnitude of climate

events during the termination are affected by the ice sheet reconstruction.

PaleoMist shows greater glacial ice sheet heights, particularly in the NH,

while GLAC1D has a substantial ice sheet volume loss, causing an off-mode

in the AMOC during the BA. The strong fluctuations in deglacial meltwa-

ter in GLAC1D lead to abrupt changes in global mean temperature and fail

to capture the BA/YD transition sequence. The FW derived from Pale-

oMist does not induce an off-mode AMOC during the BA but a pronounced

warming in the North Atlantic realm. The YD cooling in the PaleoMist sim-

ulation seems to be underestimated for this area, especially over Greenland

where most likely a pronounced overshoot dynamics is relevant (Knorr and

Lohmann, 2003; Zhang et al., 2017; Lohmann et al., 2020). The exact tim-

ing of the BA/YD sequence with respect to Shakun et al. (2012) and data

assimilation-based (Osman et al., 2021) reconstructions is a subject of further

investigation. Besides model uncertainties, dating uncertainties of marine sed-

iment cores due to changes in reservoir ages cannot be excluded (e.g., Butzin

et al., 2017; Lohmann et al., 2020).

Assessing the contributions of ice sheets, GHGs, and orbital forcing to warm-

ing during the last deglaciation, the significant role played by both GHGs and

orbital forcing in regulating the FW flux into the North Atlantic is demon-

strated, consequently affecting SSS and ocean circulation, consistent with He

(2011) and Bethke et al. (2012). It is likely that the timing of deglacial tran-

sitions is particularly influenced by the magnitude of FW fluxes associated

with the retreat of NH ice sheets (Knorr and Lohmann, 2003, 2007; Ganopol-
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ski and Roche, 2009). As an extreme case, Liu et al. (2009) proposed that

BA warming is controlled by the cessation of FW input, highlighting the sig-

nificant role of deglacial FW in the abrupt recovery of AMOC. However, this

FW history would be inconsistent with paleo-sea level proxies and both ice

sheet reconstructions used here. It is indicated that GHGs and orbital forcing

influence the precipitation patterns, affecting the proximity of the AMOC to

its bifurcation point between the on- and off-mode states. A significant reduc-

tion in FW input can lead to a shift in AMOC to a more stable mode. The

experiments could be further developed as a way to better assess the history of

ice sheet evolution. Climate-ice sheet models combined with data assimilation

could be suitable for estimating the ice sheets and deglacial meltwater.

The dynamics of the last termination include a reduction in the height of

the ice sheets and an increase in GHG concentrations to achieve appropriate

warming. The direct effect of orbital forcing on global mean surface tem-

perature is relatively small. This will be different in a fully interactive Earth

system model including ice sheets (e.g., Ganopolski and Brovkin, 2017; Willeit

et al., 2019), then the glacial termination is triggered by orbital forcing.

2. To design and implement a DA technique for the transient simula-

tion of the last deglaciation. (Chapter 5)

This study introduces a fast and efficient method for conducting DA using an

EMIC, CLIMBER-X (Willeit et al., 2022). Since CLIMBER-X has no internal

noise in the system, a stochastic version of this model was applied. In addition,

two different ice sheet reconstructions, GLAC1D (Tarasov et al., 2012) and

PaleoMist (Gowan et al., 2021), were used to investigate the effects of different

model backgrounds on the climate evolution during the last deglaciation. The

conclusions of this part are summarized in the following main points:

• The choice of ice sheet reconstruction significantly impacts model sim-

ulations, affecting ocean FW forcings and AMOC, leading to different

circulation and temperature patterns during the deglaciation. The free

simulation with the PaleoMist ice sheet reconstruction provides a more
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consistent trend than that with GLAC1D, especially during the BA/YD

sequence. Accordingly, the ice sheet reconstructions lead to different

effects of the DA.

• While DA has a minor effect on global mean surface temperature tra-

jectories, it has significantly influenced the surface temperature fields,

suggesting that the impact of DA is more prominent at regional scales

rather than at the global mean scale. The DA system improves the sur-

face temperature spatial heterogeneity (Atlantic-Pacific seesaw), repre-

senting the climate patterns for YD and BA, especially for the PaleoMist

experiment.

• The effect of DA is more pronounced at high latitudes than at mid and

low latitudes, potentially indicating disparities or inadequate represen-

tation of physical processes within the model. Considering its climate

sensitivity, CLIMBER-X performs relatively more accurately in low lati-

tudes, where the main driver is CO2 forcing, compared to high latitudes.

• The online DA approach allows us to study the performance of CLIMBER-

X, including AMOC, salinity, FW, and many other climate parameters.

Nevertheless, the effect of the online approach is not notable on the cli-

mate variables primarily due to the long time gaps between DA cycles

and due to the fact that temperature is damped out faster than other

variables like salinity (Lohmann and Schneider, 1999).

3. To investigate the effect of the assimilation of oceanic subsurface

temperature on the simulation of the last deglaciation. (Chapter 6)

This study develops the combination of CLIMBER-X and PDAF to imple-

ment DA of the subsurface temperatures. An ideal observation network was

generated and assimilated to the simulation of the last deglaciation using the

stochastic version of CLIMBER-X. The conclusions of this part are summa-

rized in the following main points:

• The simulations done by the stochastic CLIMBER-X show some differ-

ences from those conducted by the deterministic version of CLIMBER-X
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(Chapter 4). This point illustrates the importance of choosing the source

of randomness added to the model.

• The update of initial conditions for subsurface temperatures by the online

DA, even every 100 years, has explicit effects on the performance of the

model. This is due to having a wide observation network of subsurface

temperatures and due to the fact that temperatures in deeper layers have

a longer memory (their effects attenuate slowly during the time) than the

surface temperature.

• Assimilation of subsurface temperatures changes the precipitation and

consequently FW flux, AMOC, and SST. DA influences the timing of

climate events. Therefore, the online DA, introduced in this study, can

be useful in adjusting the model to replicate the climate events during

the last deglaciation if a suitable observation network assimilates into

the model.

• In agreement with Chapter 4 and Chapter 5, this part showed that the

ice sheet reconstruction is the main uncertainty in the last deglaciation

simulations. Modifying the ice sheet reconstruction can be used as a

tuning factor to capture the BA/YD sequence at the right time with

meaningful magnitudes.

7.2 Outlook

Simulations with prescribed ice sheets cannot resemble the full dynamics of the

termination as in such simulations, the deglacial FW flux acts as a forcing rather

than a response to AMOC changes (Lohmann and Schulz, 2000). As a logical next

step, transient simulation of the last deglaciation with fully interactive ice sheets

will explore the climate and biogeochemical feedback in the system. In addition,

single forcing experiments are deemed to be important in evaluating the phase-space

and instabilities in the system.

The DA approach introduced in this work is not restricted to the specific application

of the deglacial climate presented in this dissertation. CLIMBER-X and PDAF or
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their variations can also be applied to other data sets and scientific questions for

long-term variations in the past. There are several future steps that can improve

the DA technique implemented in this study. For example, since the FW forcing

plays a significant role in the transient simulation of the past, it is worth making the

model stochastic by adding precipitation randomness to the model instead of tem-

perature or adding both temperature and precipitation randomness. Given that the

stochastic version of the CLIMBER-X and the deterministic CLIMBER-X differ in

the simulation of the last deglaciation, another logical technical step is to make per-

turbations based on the output of simulations conducted by CLIMBER-X or other

models instead of TraCE-21000 project (He, 2011) to understand better the effect of

the origin of the perturbations on the performance of the stochastic model. Further-

more, this study showed that the assimilation of only real surface temperature every

100 years does not cause any meaningful impact on the model performance for simu-

lating other climate variables; however, assimilating ideal subsurface temperatures

influences the model performance even with the long gap between DA incidents.

Therefore, another logical step is to conduct DA experiments with shorter DA cy-

cles to update the initial condition more frequently. Finally, the DA technique in

this study can be used to simulate future scenarios. For example, one can design

a future simulation forced by GHGs concentrations and orbital forcing and assim-

ilate the subsurface temperatures into the model to have a weak ocean circulation

to investigate the stability of glaciers and the FW budget of the North Atlantic.

Max et al. (2022) suggest that weak ocean circulation in the future could expedite

warming within the subpolar Atlantic’s interior ocean. This accelerated warming

might significantly impact the stability of contemporary marine-terminating Arctic

glaciers and alter the freshwater balance in the North Atlantic.
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Appendix A

Simulations of the Last Deglaciation

Figure A.1: Concentration evolution of CH4 (a), N2O (b), and CO2 (c). Radiative
forcing derived from the concentration of CH4 (a), N2O (b), and CO2 (d). Data is
provided by Köhler et al. (2017).
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Table A.1: Simulations which are conducted in Chapter 4. Ice-sheet reconstructions, GLAC1D and
PaleoMist, include topography, bathymetry, and land-sea distribution.

Exp. GLAC1D Exp. PaleoMist Transient Forcing Constant Forcing FW Forcing

GLAC1D_full PaleoMist_full Ice-sheet reconstruc-

tion, GHG, Orbital

- Melted ice-sheet,

Precipitation-

evaporation, Sea ice

fluxes, Land runoff

GLAC1D_fixIce PaleoMist_fixIce GHG, Orbital LGM ice-sheet re-

construction

Precipitation-

evaporation, Sea ice

fluxes, Land runoff

GLAC1D_fixGHG PaleoMist_fixGHG Ice-sheet reconstruc-

tion, Orbital

LGM GHGs Melted ice-sheet,

Precipitation-

evaporation, Sea ice

fluxes, Land runoff

GLAC1D_fixOrbit PaleoMist_fixOrbit Ice-sheet reconstruc-

tion, GHG

LGM Orbit Melted ice-sheet,

Precipitation-

evaporation, Sea ice

fluxes, Land runoff

GLAC1D_PI PaleoMist_PI - PI Ice-sheet recon-

struction, GHG, and

orbital

Melted ice-sheet,

Precipitation-

evaporation, Sea ice

fluxes, Land runoff
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Figure A.2: Precipitation differences between GLAC1D_full and
GLAC1D_fixGHG(left), GLAC1D_full and GLAC1D_fixOrbit (right) for
LGM, HS1, BA, and YD.
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Figure A.3: Precipitation differences between PaleoMist_full and Pale-
oMist_fixGHG(left), PaleoMist_full and PaleoMist_fixOrbit (right) for LGM,
HS1, BA, and YD.
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Figure A.4: Global precipitation minus evaporation for Exp_GLAC1D (left) and
Exp_PaleoMist (right) during the last deglaciation.

Figure A.5: Sea surface salinity differences between GLAC1D_full and Pale-
oMist_full for different periods of the last deglaciation.

90



Appendix A. Simulations of the Last Deglaciation

Figure A.6: Ice-thickness differences between GLAC1D and PaleoMist for different
periods of the last deglaciation.

91



Figure A.7: FW flux into (a) the Pacific Ocean (north of 30◦S), (b) Atlantic Ocean
(north of 30◦S), and (c) Southern Ocean for GLAC1D_full and PaleoMist_full.
Units are Sv=106 m3/s. The FW flux is the sum of precipitation minus evaporation,
sea ice fluxes, land runoff, and deglacial melting of the ice sheets.
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Figure A.8: Sea level pressure differences between GLAC1D_full and Pale-
oMist_full for LGM, HS1, BA, and YD.

Figure A.9: Zonal wind differences between GLAC1D_full and PaleoMist_full for
LGM, HS1, BA, and YD
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Figure A.10: Meridional wind differences between GLAC1D_full and Pale-
oMist_full for LGM, HS1, BA, and YD.

Figure A.11: Surface albedo differences between GLAC1D_full and PaleoMist_full
for different periods of the last deglaciation.
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Appendix B

Assimilation of subsurface

Temperatures

Figure B.1: Mean temperature for 23 layers of the ocean. Layer A is the surface
layer (≈5 m), and Layer W is the deepest layer (≈5000 m). The layers have different
depths. The orange is used as observation for DA, and black is the temperature for
PaleoMist_full (Chapter 4)

.
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Figure B.2: Mean temperature for 23 layers of the ocean for DA experiment using
PaleoMist_1000. Layer A is the surface layer (≈5 m), and Layer W is the deepest
layer (≈5000 m). The layers have different depths. The orange, green, and black
lines illustrate trajectories for observation, DA ensemble, and prior ensemble means,
respectively.
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